NOTICE OF AMENDMENT

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

March 4, 2009

Mr. Dan Nerbonne
Vice President, Engineering
Plains Pipeline, L.P.
333 Clay Street, Suite 1600 (77002)
P. O. Box 4648
Houston, Texas 77210-4648

Dear Mr. Nerbonne

From April to July, 2008 and February 18, 2009, representatives of the Pipeline and Hazardous Materials Safety Administration (PHMSA) and the California State Fire Marshal pursuant to Chapter 601 of 49 United States Code inspected Plains Pipeline, L.P. (Plains) procedures for Operations and Maintenance, Operator Qualification, and Integrity Management.

On the basis of the inspection, PHMSA has identified the apparent inadequacies found within Plains' plans or procedures, as described below:

1. §195.452 Pipeline integrity management in high consequence areas.

 (f) An operator must include, at minimum, each of the following elements in its written integrity management program:

 (3) An analysis that integrates all available information about the integrity of the entire pipeline and the consequences of a failure (see paragraph (g) of this section);

 (g) What is an information analysis? In periodically evaluating the integrity of each pipeline segment (paragraph (j) of this section), an operator must analyze all available information about the integrity of the entire pipeline and the consequences of a failure. This information includes:
(1) Information critical to determining the potential for, and preventing, damage due to excavation, including current and planned damage prevention activities, and development or planned development along the pipeline segment;
(2) Data gathered through the integrity assessment required under this section;
(3) Data gathered in conjunction with other inspections, tests, surveillance and patrols required by this Part, including, corrosion control monitoring and cathodic protection surveys; and
(4) Information about how a failure would affect the high consequence area, such as location of the water intake.

A. Plains’ data integration process must be modified to require the application of tool uncertainty to ILI results during the discovery phase of assessment reviews when comparing ILI results to IM rule repair requirements. PHMSA does not specify a particular approach to handling tool uncertainty, but expects reasonable consideration of tool capabilities and tolerances when comparing results to IM rule repair criteria. The Inspection Team reviewed Plains’ processes (including CGAR) for handling tool tolerances in the remediation of metal loss anomalies as reported in the ILI vendor report and determined that it did not have a direct impact on the timing for the remediation of immediate and 180-day metal loss conditions at the time of discovery.

B. Plains' process for validating the results of in-line inspection (ILI) must be modified to incorporate the current methodology being utilized. The Inspection Team reviewed the ILI Inspection Worksheet in the IMP and the current process for evaluating the as-called and as-found anomaly dimensions, and the methodology being implemented by Plains must be incorporated into the IMP.

2. §195.585 What must I do to correct corroded pipe?
 (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness is less than that required for the maximum operating pressure of the pipeline, you must replace the pipe. However, you need not replace the pipe if you—

 (1) Reduce the maximum operating pressure commensurate with the strength of the pipe needed for serviceability based on actual remaining wall thickness; or (2) Repair the pipe by a method that reliable engineering tests and analyses show can permanently restore the serviceability of the pipe.

 (b) Localized corrosion pitting. If you find pipe that has localized corrosion pitting to a degree that leakage might result, you must replace or repair the pipe, unless you reduce the maximum operating pressure commensurate with the strength of the pipe based on actual remaining wall thickness in the pits.

 Plains must modify their procedures to provide specific guidance in their Operations and Maintenance Manual for those specific composite repairs methods that are approved for use and the procedures that are to be followed when performing composite repairs.
§195.452 Pipeline integrity management in high consequence areas.

(f) see above

(4) Criteria for remedial actions to address integrity issues raised by the assessment methods and information analysis (see paragraph (h) of this section);

(h) What actions must an operator take to address integrity issues?

(1) General requirements. An operator must take prompt action to address all anomalous conditions that the operator discovers through the integrity assessment or information analysis. In addressing all conditions, an operator must evaluate all anomalous conditions and remediate those that could reduce a pipeline’s integrity. An operator must be able to demonstrate that the remediation of the condition will ensure that the condition is unlikely to pose a threat to the long-term integrity of the pipeline. A reduction in operating pressure cannot exceed 365 days without an operator taking further remedial action to ensure the safety of the pipeline. An operator must comply with §195.422 when making a repair.

§195.55 Reporting safety-related conditions.

(a) Except as provided in paragraph (b) of this section, each operator shall report in accordance with §195.56 the existence of any of the following safety-related conditions involving pipelines in service:

(1) General corrosion that has reduced the wall thickness to less than that required for the maximum operating pressure, and localized corrosion pitting to a degree where leakage might result.
(2) Unintended movement or abnormal loading of a pipeline by environmental causes, such as an earthquake, landslide, or flood, which impairs its serviceability.
(3) Any material defect or physical damage that impairs the serviceability of a pipeline.
(4) Any malfunction or operating error that causes the pressure of a pipeline to rise above 110 percent of its maximum operating pressure.
(5) A leak in a pipeline that constitutes an emergency.
(6) Any safety-related condition that could lead to an imminent hazard and causes (either directly or indirectly by remedial action of the operator), for purposes other than abandonment, a 20 percent or more reduction in operating pressure or shutdown of operation of a pipeline.

(b) A report is not required for any safety-related condition that—
(1) Exists on a pipeline that is more than 220 yards (200 meters) from any building intended for human occupancy or outdoor place of assembly, except that reports are required for conditions within the right-of-way of an active railroad, paved road, street, or highway, or that occur offshore or at onshore locations where a loss of hazardous liquid could reasonably be expected to pollute any stream, river, lake, reservoir, or other body of water;
(2) Is an accident that is required to be reported under §195.50 or results in such an accident before the deadline for filing the safety-related condition report; or
(3) Is corrected by repair or replacement in accordance with applicable safety standards before the deadline for filing the safety-related condition report, except that reports are required for all conditions under paragraph (a)(1) of this section other than localized corrosion pitting on an effectively coated and cathodically protected pipeline.

Plains must modify their processes to ensure the inclusion of the requirement to submit Safety Related Condition Reports (SRCR) in their IMP when pressure reductions are taken for conditions meeting the SRCR criteria.

4. §195.3 Matter incorporated by reference in whole or in part.

§195.200 Scope. This subpart prescribes minimum requirements for constructing new pipeline systems with steel pipe, and for relocating, replacing, or otherwise changing existing pipelines that are constructed with steel pipe.

§195.222 Welders: Qualification of welders.

(a) Each welder must be qualified in accordance with section 6 of API 1104 (ibr, see § 195.3 or section IX of the ASME Boiler and Pressure Vessel Code, (ibr, see § 195.3) except that a welder qualified under an earlier edition than listed in § 195.3 may weld but may not re-qualify under that earlier edition.

(b) No welder may weld with a welding process unless, within the preceding 6 calendar months, the welder has--
 (1) Engaged in welding with that process; and
 (2) Had one welded tested and found acceptable under section 9 of API 1104 (ibr, see § 195.3).

§195.228 Welds and welding inspection: Standards of acceptability.

(a) Each weld and welding must be inspected to ensure compliance with the requirements of this subpart. Visual inspection must be supplemented by nondestructive testing.

(b) The acceptability of a weld is determined according to the standards in Section 9 of API 1104. However, if a girth weld is unacceptable under those standards for a reason other than a crack, and if Appendix A to API 1104 (ibr, see §195.3) applies to the weld, the acceptability of the weld may be determined under that appendix.

§195.422 Pipeline repairs.

(a) Each operator shall, in repairing its pipeline systems, insure that the repairs are made in a safe manner and are made so as to prevent damage to persons or property.
No operator may use any pipe, valve, or fitting, for replacement in repairing pipeline facilities, unless it is designed and constructed as required by this part.

Plains must modify their procedures to provide specific guidance in their procedures for ensuring the qualification of welders are verified and documented prior to performing new construction welding and repair welding. These requirements must provide adequate quality controls to ensure welders are specifically qualified to perform either new construction welding (per API 1104) or repair welding (per API 1107) as detailed and defined in Plains Specification No. 207 – “Welding Performance Qualification”.

5. §195.402 Procedural manual for operations, maintenance, and emergencies.

(c) Maintenance and normal operations. The manual required by paragraph (a) of this section must include procedures for the following to provide safety during maintenance and normal operations:

A. Plains’ O&M Manual Section 412, Corrosion Control, references the regulations in several locations. The manual uses these references as the procedures guidelines for maintenance requirements. The regulation 195.402 requires procedures to be established in adequate details for employees to perform their maintenance activities safely. Plains’ must modify the procedures to provide specific details within the manual on how the regulations will be complied with.

B. §195.405 Protection against ignitions and safe access/egress involving floating roofs

(a) After October 2, 2000, protection provided against ignitions arising out of static electricity, lighting, and stray currents during operation and maintenance activities involving aboveground breakout tanks must be in accordance with API Recommended Practice 2003, unless the operator notes in the procedural manual (§195.402(c)) why compliance with all or certain provisions of API Recommended Practice 2003 is not necessary for the safety of a particular breakout tank.

Plains does not have adequate procedures addressing static electricity buildup when filling aboveground storage tanks with floating roofs when the roof has been landed and there is a space between the liquid in the tank and the bottom of the roof. API 2003, section 4.5.2, specifies that the fill rate should be limited to 1 meter per second until the roof floats (is buoyant). Plains O&M -420 (Breakout Tank) procedures addresses some of the requirements of API 2003, but not the limitation on flow into a tank that has had the roof landed. Plains should review and modify their procedures for filling tanks where the floating roof has been landed to adequately address the requirements of API 2003, specifically the requirement in section 4.5.2 that flow rate should be limited to 1 meter per second until the roof floats.
C. §195.422 Pipeline repairs.
(b) No operator may use any pipe, valve or fitting, for replacement in repairing pipeline facilities, unless it is designed and constructed as required by this part.

§195.307 Pressure testing aboveground breakout tanks.
(c) For aboveground breakout tanks built to API Standard 650 and first placed in service after October 2, 2000, must be hydrostatic and pneumatic testing must be in accordance with section 5.3 of API Standard 650.
(d) For aboveground atmospheric pressure breakout tanks constructed of carbon and low alloy steel, welded or riveted, and non-refrigerated and tanks built to API Standard 650 or its predecessor Standard 12C that are returned to service after October 2, 2000, the necessity for the hydrostatic testing of repair, alteration, and reconstruction is covered in section 10.2 of API Standard 653.

Plains Specification PAALP-001-ST-007 states that Plains will hydrostatically test tanks per API 650 Section 5.3.5(a), Plains also tests tanks per API 650 Section 5.3.5(b) per Plains personnel, but the procedure does not cover this option. Also, Plains Aboveground Storage Tank Inspection, Repair, and Maintenance Specifications does not address the hydrostatic test requirements of API 653 section 12.3. The Specification calls for testing per API 653, but does not address the hydrostatic test requirements.

D. §195.428 Overpressure safety devices and overfill protection systems.
(a) Except as provided in paragraph (b) of this section, each operator shall, at intervals not exceeding 15 months, but at least once each calendar year, or in the case of pipeline used to carry highly volatile liquids, at intervals not exceed 7 ½ months, but at least twice each calendar year, inspect and test each pressure limiting device, relief valve, pressure regulator, or other item of pressure control equipment to determine that it is functioning properly, is in good mechanical conditions, and is adequate from the standpoint of capacity and reliability of operation for the service in which it is used.

The procedure Plains has for checking relief valves and overpressure safety devices, but does not address thermal relief valves on the system. Plains should incorporate the inspection of thermal relief valves in their procedures.

E. §195.428 Overpressure safety devices and overfill protection systems.
(c) Aboveground breakout tanks that are constructed or significantly
altered according to API Standard 2510 after October 2, 2000, must have an overfill protection system installed according to section 5.1.2 of API Standard 2510. Other aboveground breakout tanks with 600 gallons (221 liters) or more of storage capacity that are constructed or significantly altered after October 2, 2000, must have an overfill protection system installed according to API Recommended Practice 2350. However, operator need not comply with any part of API Recommended Practice 2350 for a particular breakout tank if the operator notes in the manual required by §195.402 why compliance with that part is not necessary for safety of the tank.

Plains procedures for breakout tanks does not include the requirement of §195.428(c) that all aboveground breakout tanks constructed or significantly altered after January 2, 2000 have an overfill protection system installed per API 2510, section 5.1.2. Plains should modify their procedures to include the overfill protection system requirement.

F. §195.432 Inspection of in-service breakout tanks.
 (b) Each operator shall inspect the physical integrity of in-service atmospheric and low-pressure steel aboveground breakout tanks according to section 4 of API Standard 653. However, if structural conditions prevent access to the tank bottom, the bottom integrity may be assessed according to a plan included in the operations and maintenance manual under §195.402(c)(3).

The Plains breakout tank procedure cites sections of API 653 Section 4 for breakout tank inspection requirements, the currently published version of 49 CFR 195 has section 4 listed, but in the currently referenced version of API 653 the inspection requirements are in Section 6.

G. §195.561 When must I inspect pipe coating used for external corrosion control?
 (a) You must inspect all external pipe coating required by §195.557 just prior to lowering the pie into the ditch or submerging the pipe.
 (b) You must repair any coating damage discovered.

Plains’ O&M Manual Section 412, Corrosion Control, page 9 states a coating inspection is needed. The procedures do not state or reference what this activity entails and how it will be carried out. The Corrosion Specification manual does provide details, but only for new construction and should also be referenced in the O&M. Plains’ must modify the procedures to provide specific reference details within the O&M manual to the Corrosion Specification.

H. §195.565 How do I install cathodic protection on breakout tanks?
 After October 2, 2000,, when you install cathodic protection under §195.563(a) to protect the bottom of an aboveground breakout tank of
more than 500 barrels capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in the corrosion control procedures established under §195.402(c)(3) why compliance with all or certain provisions of API Recommended Practice 651 is not necessary for the safety of the tank.

Plains has installed a Vapor Corrosion Inhibitor System (VpCI) under several breakout tanks at the Cushing Terminal Facility. The system does not rely on cathodic protection to protect the tank bottom. A VpCI system is used, the system was installed when the linear anode ground bed under the tank depleted and could not be replaced due to the separation distance between the tank bottom and the tank bottom under tank liner. Cathodic protection cannot be provided to the tank bottom from external ground beds due to the under tank liner. Plains does not have procedures for the installation or monitoring of the VpCI system, nor does Plains have it noted why the use of cathodic protection is not needed for the tank bottom protection due to the use of the VpCI system. Plains’ must modify the procedures to provide specific details within the O&M manual to include the VpCI.

I. §195.571 What criteria must I use to determine the adequacy of cathodic protection?
Cathodic Protection required by this subpart must comply with one or more of the applicable criteria and other considerations for cathodic protection contained in paragraphs 6.2 and 6.3 of NACE Standard RP0169-96 (incorporated by reference).

Plains’ O&M Manual Section 412, Corrosion Control, page 2 provides little guidance to how IR drop will be considered and how it will affect “on” readings. There is no guidance addressing when a marginal reading is taken that IR must be taken into account to assure the minimum -.850 mv criteria is met. The operator performs native potential surveys, on/off readings and on/off close interval surveys on their pipeline systems. The procedures do not address how this data will be used to address IR considerations when only “on” readings are recorded. The procedures also state that taking a reading at the pipe to soil interface is a method for determining IR drop. Discussion was raised on this and it was agreed that this is not an adequate method for determining IR drop. Plains’ must modify the procedures to provide specific details in the application of IR drop.

J. §195.573 What must I do to monitor external corrosion control?
(a) Protected pipelines. You must do the following to determine whether cathodic protection required by this subpart complies with §195.571;
(2) Identify before December 29, 2003 or not more than 2 years after cathodic protection is installed, whichever comes later, the circumstances in which a close-interval survey or comparable technology is practicable and necessary to accomplish the objectives of paragraph 10.1.1.3 NACE Standard RP0169-96 (incorporated by reference, see §195.3).

Plains must modify their procedures for the implementation of Close Interval Survey (CIS), review of the results of the CIS, and remediation of anomalies identified during the CIS to ensure consistent application and repeatability. The amended procedures may include specific requirements for the CIS provider to ensure CIS are conducted in a consistent manner and results provided to Plains in a consistent format. The amended procedures must include specific requirements for the following:

- Corrosion Supervisor responsibilities in the implementation of CIS, review of the results of the CIS, and remediation of anomalies identified during the CIS,
- How Plains will review the results of the CIS and perform quality checks on performance of CIS and data collected to ensure the data actually is representative of what is occurring in the field,
- How Plains will handle issues identified in CIS (e.g.; inconsistencies in the data and field notes, synchronization of rectifiers, telluric currents),
- Development and implementation of action plans for addressing the external corrosion issues identified in CIS and for demonstrating and documenting the adequacy of the 100 mv shift criteria in areas were the -850mv off criteria is not met, when applicable.

K. §195.575 Which facilities must I electrically isolate and what inspection, tests, and safeguards are required?

(c) You must inspect and electrically test each electrical isolation to assure the isolation is adequate.

Plains’ O&M Manual Section 412, Corrosion Control, page 13 states that when casing is shorted that one of the following will be performed. One of those items includes monitoring the shorted casing for leaks. The procedures do not specify what type of monitoring will occur. It was stated that monitoring will be performed with a Combustible Gas Indicator (CGI) until remedial actions are performed. Plains’ must modify the procedures to provide specific details to the type of monitoring that will occur.

L. §195.589 What corrosion control information do I have to maintain?

(a) You must maintain current records or maps to show the location of-

(2) Cathodic protection facilities, including galvanic anodes, installed after January 28, 2002.

Plains’ O&M Manual Section 412, Corrosion Control, pages 1 and 2 provides no guidance for documenting and making available cathodic protection facility records as they relate to galvanic anodes. A process needs to be developed that will allow these features to be recorded and
in the process as other cathodic protection items are. The procedures also do not address the practice of installing test points at all galvanic installations to allow an on/off reading. Plains’ must modify the procedures to provide specific details on how galvanic are installed and how they are recorded and mapped.

M. §195.559 What coating material may I use for external corrosion control?
Coating material for external corrosion control under §195.557 must –
(b) Have sufficient adhesion to the metal surface to prevent under film migration of moisture.

Plains’ O&M Manual Section 412, Corrosion Control, pages 10 and 11 provides little guidance to what is expected as a coating standard for the transition coating. It was stated that the below ground coatings are to extend above ground and then painted to protect the below ground coatings. In addition there is no guidance to how far above the transition point this below grade coating is expected to extend. Plains’ must modify the procedures to provide specificity of expectations for this interface area.

N. §195.583 What must I do to monitor atmospheric corrosion control?
(b) During inspection you must give particular attention to pie at soil-to-air interfaces, under thermal insulation, under disbanded coatings, at pipe supports, in splash zones, at deck penetrations, and in spans over water.

Plains’ O&M Manual Section 412, Corrosion Control, page 11 states that an inspection of the soil interface area will be performed, however the forms have no place to record this information to demonstrate compliance. Plains’ must modify the procedures to provide a means of documentation.

O. §195.569 Do I have to examine exposed portions of buried pipelines?
Whenever you have knowledge that any portion of a buried pipeline is exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under §195.585, you must investigate circumferentially and longitudinally beyond the exposed portion (by visual examination, indirect method, or both) to determine whether additional corrosion requiring remedial action exists in the vicinity of the exposed portion.

Plains’ O&M Manual Section 412, Corrosion Control, page 11 states that unintentionally exposed pipe shall be inspected when known. An operator must provide reasonable efforts to know where exposures are on there systems. An operator is required to inspect aboveground piping for atmospheric corrosion. On pipeline systems were close interval surveys have been performed all exposed piping has been identified and cataloged for future atmospheric corrosion inspections. Some pipeline systems have been specifically inspected for exposed piping and locations cataloged. There also exist several pipeline sections that have never had the system
reviewed to identify locations of exposed piping. The operator currently has no systematic plans to catalog these areas were the pipeline is exposed to atmospheric corrosion. It was stated that there is a goal to close interval survey all pipeline sections which would address this issue, however there are no documents showing these plans. Plains’ must modify the procedures to provide specific details on what reasonable efforts are needed to gain knowledge of exposed pipe system wide

6. **§195.402 Procedural manual for operations, maintenance, and emergencies.**
 (c) Maintenance and normal operations. The manual required by paragraph (a) of this section must include procedures for the following to provide safety during maintenance and normal operations:
 (7) Starting up and shutting down any part of the pipeline system in a manner designed to assure operation within the limits prescribed by §195.406, consider the hazardous liquid or carbon dioxide in transportation, variations in altitude along the pipeline, and pressure monitoring and control devices.

Plains’ procedures for operating the Cushing Terminal, Lumberton Station, and Eucutta Station do not provide adequate detail for meeting the requirements of 195 for starting up, operating, and shutting down the pipeline system at Cushing Terminal, Lumberton Station, and Eucutta Station. The procedures do not provide detailed guidance on how to start up or shutdown the pipeline system at the terminal, nor how monitoring is done and how over/short calculations are performed.

Plains should review and modify their procedures for Cushing Terminal, Lumberton Station, and Eucutta Station to ensure they provide sufficient detail to cover start-up and shutdown of the pipeline systems, and monitoring during normal operation.

7. **§195.402 Procedural manual for operations, maintenance, and emergencies.**
 (d) Abnormal operation. The manual required by paragraph (a) of this section must include procedures for the following to provide safety when operating design limits have been exceeded:
 (1) Responding to, investigating, and correcting the cause of:
 (iii) Including loss of communications.

Plains procedures for the Cushing Terminal do not provide adequate detail for meeting the requirements for investigating and correcting deviations from normal operations which could cause a hazard to persons or property. For High Tank Alarms the procedure lists that there are two tanks alarms with their settings, but the procedures do not address what actions the operators are to take in response to the alarms.

Plains procedures for the Lumberton Station do not provide adequate detail for meeting the requirements for investigating and correcting deviations from normal operations which could cause a hazard to persons or property. Section 225.3
Running Procedures of the procedures for Lumberton Station states “4) Any abnormal condition is to be reported to the Dispatcher immediately, record on Log Sheet and complete Abnormal Condition Report when time permits.” The procedure does not cover the requirement for investigating and correcting an Abnormal Operation, nor does it adequately address handling abnormal operations in the case of loss of communications where the Dispatcher cannot be contacted.

Plains procedures for the Eucutta Station do not provide adequate detail for meeting the requirements for investigating and correcting deviations from normal operations which could cause a hazard to persons or property. Section 226.4 Running Procedures states “2) The Operator will also: d) Report any abnormal operations to the Supervisor.” The procedure does not cover the requirement for investigating and correcting an Abnormal Operation nor does it adequately address handling abnormal operations in the case of loss of communications where the Supervisor cannot be contacted.

In regard to Items 1 through 4, 5A, and 5G through 5O, listed above, Plains provided finalized documentation via email to PHMSA on July 25, July 28, August 6, 2008, and August 21, 2008, of various changes made to their O&M Manual. After considering the material provided, PHMSA deemed the modifications adequate, and no further action is required in response to this Notice.

Response to this Notice

This Notice is provided pursuant to 49 U.S.C. § 60108(a) and 49 C.F.R. § 190.237. Enclosed as part of this Notice is a document entitled Response Options for Pipeline Operators in Compliance Proceedings. Please refer to this document and note the response options. Be advised that all material you submit in response to this enforcement action is subject to being made publicly available. If you believe that any portion of your responsive material qualifies for confidential treatment under 5 U.S.C. 552(b), along with the complete original document you must provide a second copy of the document with the portions you believe qualify for confidential treatment redacted and an explanation of why you believe the redacted information qualifies for confidential treatment under 5 U.S.C. 552(b). If you do not respond within 30 days of receipt of this Notice, this constitutes a waiver of your right to contest the allegations in this Notice and authorizes the Associate Administrator for Pipeline Safety to find facts as alleged in this Notice without further notice to you and to issue a Final Order.

If, after opportunity for a hearing, your plans or procedures are found inadequate as alleged in this Notice, you may be ordered to amend your plans or procedures to correct the inadequacies (49 C.F.R. § 190.237). If you are not contesting this Notice, we propose that you submit your amended procedures to my office within 30 days of receipt of this Notice. This period may be extended by written request for good cause. Once the inadequacies identified herein have been addressed in your amended procedures, this enforcement action will be closed.
In your correspondence on this matter, please refer to CPF 4-2009-5004M and for each document you submit, please provide a copy in electronic format whenever possible.

Sincerely,

R. M. Seeley
Director, Southwest Region
Pipeline and Hazardous Materials Safety Administration

Enclosure: Response Options for Pipeline Operators in Compliance Proceedings