Gas Transmission Asset and Integrity Management

Risk Model Presentation

Cindy Anslinger
Jarrett Compton
Vectren’s Gas Footprint

- ** Vectren Energy Delivery of Indiana – South**
  - 111,000 gas customers
  - 142 miles of transmission

- ** Vectren Energy Delivery of Indiana – North**
  - 580,000 gas customers
  - 652 miles of transmission

- ** Vectren Energy Delivery of Ohio**
  - 314,000 gas customers
  - 212 miles of transmission

- ** Vectren Storage Fields**
  - 8 Storage Field Locations
**Vectren Risk Model History**

- **2002**: Pipeline Safety Act
- **2004**: Engaged Centerpoint Energy as a consultant to help in the development of relative risk ranking model. Subsequently used Sewall RiskCalculator™ to identify top 50% risk ranked pipelines.
- **2007**: Adopted SmallWorld™ GIS system with a custom algorithm for automated Class and HCA identification. Also switched to Method 2 for HCA identification. The GIS system could not provide data transfer to Risk Calculator which necessitated the move to an SME style risk model with input from RiskCalculator™.
- **2011**: Following the annual review of the Integrity Management Plan, a philosophy change in risk assessment resulted in the evaluation of several pipeline risk software packages. GeoFields RiskFrame® Modeler was chosen to evaluate risk and RiskFrame® HCA to evaluate Class and HCA.
Goals of Risk Process

• Provide Management with easily understandable view of overall system risk.

• Provide Integrity Management Project Team with actionable information.

• Demonstrate effect on pipeline risk as a direct result of assessments and modernization project work.

• Demonstrate that the risk model reflects reported incidents as well as local operations observations on local pipeline risk.

• Provide Project Team with assessment options through scenarios.
Risk Model Review Process

Plan

Run risk model 1st quarter and compare against 5yr field work schedule

Perform current year field work.

Do

Adjust

Modify algorithm based on input from annual review.

Check

4th quarter annual review with SMEs and field personnel to verify algorithm and recommend improvements.
Risk Scoring Process

**Risk Score:**
Weighted relative index score based on pipe parameters and surroundings

- **Risk of Failure**
  - **Consequence of Failure**
    - Population
    - Business
    - Environment
  - **Likelihood of Failure**
    - B31.8S Threats

119 Inputs
Risk Model Equations

Risk of Failure (ROF)

$\text{ROF} = \text{Likelihood of Failure} \times \text{Consequence of Failure}$
Risk Model Equations

Likelihood of Failure = \frac{10*TPD + 7*MFG + 5*IO + 5*WOF + 7*CONS + 3*DS + 6*EQ + 9*EC + 1*IC + 1*SCC + 5*IAT}{59}

- TPD → Third Party Damage
- MFG → Manufacturing
- IO → Incorrect Operations
- WOF → Weather and Outside Forces
- CONS → Construction
- DS → Design
- EQ → Equipment
- EC → External Corrosion
- IC → Internal Corrosion
- SCC → Stress Corrosion Cracking
- IAT → Interactive Threats

ASME B31.8S Threat Categories
Consequence of Failure = \( \frac{7\times \text{COB} + 1\times \text{COE} + 10\times \text{COP}}{18} \)

- **COB** → Consequence on Business
  1. Customers out of Service
  2. Loss of Product

- **COE** → Consequence on Environment
  1. Environmentally Sensitive Areas

- **COP** → Consequence on Population
  1. Potential harm to people and/or property near pipeline
Range of Risk Scores

Risk of Failure

1 → Lowest Risk
100 → Highest Risk

Consequence, Likelihood, and Inputs

1 → Lowest Risk
10 → Highest Risk
Transmission Risk Inputs

- Consequence MAOP
- Consequence Nominal Diameter
- Single Feed Locations
- DOT Class Environment
- HCA Gas Constant
- Nominal Diameter
- Wall Thickness
- Depth of Cover
- Construction Inspection
- Construction Material
- Pressure Test
- Joint Inspection
- Wrinkle Bends
- Weld Method
- Current Year
- Install Date
- Earthquake Zones
- Land Slides
- Safety Systems
- AC Interference
- Bell Hole Inspection
- Roads
- Blasting Zones
- Exposures
- Cathodic Protection
- External Coating
- External Metal Loss
- Microbiological Induced Corrosion
- Bell Hole Soil pH
- Soil Resistivity
- Coating Condition
- Equipment Failure
- Age Failure
- O Ring Failure
- Regulator Failure
- Relief Valve
- Main Line Valves
- Remote and Non Remote-Controlled Main Line Valves
- Carbon Dioxide Content Level
- Corrosion Detection Devices
- Hydrogen Sulfide Content Level
- Internal Metal Loss
- Oxygen Content Level
- Single Family Home Density
- Encroachment Area
- High Occupancy Location
- Incorrect Operations Failures/Near Miss
- Internal Corrosion
- Water Content Level
- Storage Field
- Emergency Response Training
- Audit Findings – IM, O&M
- Operations and Training
- Pressure Control System
- Program/Procedure Review
- SCADA
- Pipe Material
- Pipe Manufacturer
- Seam Type
- Foreign Line Crossing
- Leaks
- Line Markers
- Mechanical Damage
- One-Call
- Public Awareness Program
- Patrol Frequency
- Patrol Type
- Previous Third-Party Damage
- River Crossing
- River Weights
- Frost Line
- Flood Zones
Dynamic Segmentation

Breaks the route at every attribute change creating a new risk segment
Accounting for Assessments

Threats that can be mitigated by assessment get reduced by a diminishing factor.
Example: External Corrosion

\[
EC_{\text{score}} = \frac{EC_{\text{max Effective}} \times (7 \times \text{Install Date Score}_{\text{EC}}) + (8 \times \text{External Coating Score}_{\text{EC}}) + (10 \times \text{Coat Cond Score}_{\text{EC}}) + (8 \times \text{ML Formula Score}_{\text{EC}}) + (7 \times \text{Wall Thickness Score}_{\text{EC}}) + (4 \times \text{Nom Dia Score}_{\text{EC}}) + (5 \times \text{Pct SMYS Score}_{\text{EC}}) + (2 \times \text{EC P logic Score}_{\text{EC}}) + (1 \times \text{Effective CP Factor Score}_{\text{EC}}) + (9 \times \text{Bell Hole EC Present Score}) + (5 \times \text{MIC Present Score}) + (5 \times \text{Solv pH Score}_{\text{EC}}) + (8 \times \text{Soil Resistivity Formula}) + (8 \times \text{AC Interference Score})}{87}
\]

While Threats that cannot mitigated by assessment are not reduced.
Example: Design

\[
DS_{\text{score}} = \frac{(10 \times \text{Pipe Strength Score}) + (0 \times \text{Safety Systems Score}) + (5 \times \text{Design Class Year}) \times (1 \times \text{Piggable Score})}{16}
\]
Risk Model Results

<table>
<thead>
<tr>
<th>Feature</th>
<th>VALUE</th>
<th>Date Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROF</td>
<td>25.3</td>
<td>11.5</td>
</tr>
<tr>
<td>CONS</td>
<td>8.26</td>
<td>1.79</td>
</tr>
<tr>
<td>Date Installed</td>
<td>1965</td>
<td>2002</td>
</tr>
</tbody>
</table>

Ability to drill down on results and determine extent of threat.
Risk Model Results

<table>
<thead>
<tr>
<th>Risk Score</th>
<th>Number of Segments</th>
<th>Percentage by Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0.00%</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1.17%</td>
</tr>
<tr>
<td>6</td>
<td>2,743</td>
<td>13.32%</td>
</tr>
<tr>
<td>8</td>
<td>9,389</td>
<td>34.02%</td>
</tr>
<tr>
<td>10</td>
<td>18,588</td>
<td>23.68%</td>
</tr>
<tr>
<td>12</td>
<td>13,497</td>
<td>12.00%</td>
</tr>
<tr>
<td>14</td>
<td>13,676</td>
<td>9.49%</td>
</tr>
<tr>
<td>16</td>
<td>6,330</td>
<td>2.65%</td>
</tr>
<tr>
<td>18</td>
<td>5,189</td>
<td>2.18%</td>
</tr>
<tr>
<td>20</td>
<td>3,816</td>
<td>1.24%</td>
</tr>
<tr>
<td>22</td>
<td>499</td>
<td>0.16%</td>
</tr>
<tr>
<td>24</td>
<td>179</td>
<td>0.09%</td>
</tr>
<tr>
<td>26</td>
<td>38</td>
<td>0.02%</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>0.00%</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Risk Model Results

Vectren Pipeline Risk Statistical Distribution

Miles of Pipeline vs Risk Score

- 2013
- 2014
- 2015
- 2016

Lower Risk to Higher Risk
Sensitivity Study

Look at how changing one factor affects the risk score

Top 20
Model Validation

PHMSA
All Reported Incident Cause Breakdown
20 Year Average (1997-2016)

Vectren
Risk Model Threat Weightings
Model Validation

The results are also presented to local operations to solicit feedback as to the relative risk of the pipelines in the operations center.
Scenarios

Scenarios allow for the simulation of assessment activity to study the effect on risk by changing an attribute value or group of values.

This particular pipeline has a moderate risk score due to construction threats. The pipeline has the installation pressure test from 1971.

We can run a scenario to determine the effect or the risk score by simulating a new qualifying hydrotest.

For the hydrotest scenario, we have reviewed what threats would be affected and when the model is ran it will tell you how it will affect risk.
Scenarios allow for the simulation of assessment activity to study the effect on risk by changing an attribute value or group of values.

Below is shown the result of performing a pressure test on a pipeline.

In this case, there is a 25% reduction in risk score by performing a pressure test.
Missing Inputs and Nulls

• Missing and Null Value data are handled on an individual basis
• Where practical, conservative values are used to assess risk in pipe segments with missing data
• Missing data that is deemed vital to the safe operation of the system is actively collected
  • Pipe grade and Wall Thickness
    • 667 pipe segment analyzed
    • 2,315 Specimens Tested
  • Documented Test Pressure
    • All HCA gaps remediated by end of 2016
    • All Transmission gaps remediated by end of 2020
Wins

- Standardized scoring makes explaining the model and the results easier.
- Visual output has been effective in demonstrating reasoning for project prioritization.
- Annual reviews have received good participation.
Lessons Learned

- The ROF=LOF * COF format over emphasizes the consequence portion which is generally static and difficult to influence.
- Large number of risk segments makes prioritizing individual segments difficult.
- Need to account for cost of remediation activities outside of the risk model for project prioritization.
Continuing Improvements

- Prioritizing activities based on likelihood scores which are more directly affected by field work.
- Modifying model to better show how remediation and assessment lowers risk.
- Modifying model to better utilize the risk range.
- Modifying the system for improved views aligned with the role of the person.
Transmission GIS Dashboard
Questions?

VECTREN

GAIM