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Challenges (and successes) associated with 
applying mechanical damage analysis models on 
operator’s pipelines
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Background

 DNV GL assesses over a thousand mechanical damage anomalies each year for North American 
pipeline operators

– Most analyses are based on in-line inspection caliper data

– MFL or UTWM provide information on possible stress risers

– We seek conservative solutions that provide a reasonable factor of safety against failure due to 
excess strain and/or fatigue

– Safety factors on lives for dents with defects range from 2 to 5 (reflecting expected 
confidence in the calculated remaining life)

– Safety factors on the life of dents without stress concentrators typically range from 10 to 100 
(reflecting decreased confidence in remaining lives for plain dents)
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Background

 DNV GL most frequently conducts strain analyses (e.g., ASME B31.8 Appendix R) and API 579 
Level 2 fatigue assessments

– ASME B31.8 Appendix R requires some data smoothing to obtain accurate dent strain estimates 

– Pipeline companies are using in-line inspection service providers to provide these strain 
estimates

– We use cubic splines to fit the measured profiles in the axial and circumferential directions

– API 579 Level 2 fatigue lives are based on S/N curves and elastic stress concentration factors 
(SCFs)

– This type of assessment assumes no pre-existing flaw, such as a crack

– Alternatively, we conduct Level 3 fatigue analyses using finite element analyses (FEA), Paris 
Law, assuming stress concentrators are crack-like
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Background

 About 10% of the time, we perform API 579 Level 3 assessments with finite element analyses

– Nonlinear material properties, large displacements

 We analyze some dents with removed metal as if cracks were present, calculating a fatigue life 
using Paris Law, SCFs for the dent, and SCFs for the removed metal

 We are considering the use of the PRCI/BMT Fleet analysis models

– Complete formulations have not yet been published

– Full publication is expected when the current stage of the PRCI/BMT project is complete
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ASME B31.8 Appendix R - Strain Based Dent Acceptance
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ASME B31.8 Appendix R - Dent Strains
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ASME B31.8 Appendix R – “Combining” Strains

Strain on inside of pipe = [e1
2 – e1(e2 + e3) + (e2 + e3)2]0.5

 Note that these combined strain equations anticipate each of 
the three components of strain will be maximums at the 
same location

 This is likely the case for a dome-shaped dent, but it may not 
be the case for a dent with a complex shape

 The assessor should be aware of this 
possibility when seeking the maximum strain

Strain on outside of pipe = [e1
2 + e1(-e2 + e3) + (-e2 + e3)2]0.5
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API 579 Burst Pressure

 Repeated test programs 
demonstrate plain dents 
have little or no impact 
on burst pressures
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API 579 Dent Fatigue

 ASME 579, Part 12, Level 2 analysis 
for dents
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API 579 Level 2 Analyses

 Key assumptions

– Internal pressure loading only

– Isolated dents and dent-gouge combinations

– …

– High cycle fatigue

– For gouges, material has sufficient toughness (“the component is operating at or above the 
temperature that corresponds to 40 Joules (30 ft-lbs)…”)
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Dent Fatigue Accuracy
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Dent and Gouge Assessments

 API 579 Level 2 allows a remaining 
strength factor to be determined for 
dent gouge combinations
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Smooth Dent Gouge Accuracy

 Burst pressure accuracies can be off 
by 20 to 40 percent
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Uncertainties

 There is significant uncertainty in the input parameters for an assessment.  We typically don’t 
have highly accurate information on 

– Dent geometry and symmetry

– Actual material properties, especially around gouged material

– Stresses: Cyclic, typically due to pressure, Axial, Residual stresses and strains

– Stress concentrators and their geometries and characteristics (e.g., metal loss geometry)

– When and at which pressure the dent was formed

– Analysis model inaccuracies and biases

14



DNV GL ©

Uncertain Input Parameters – Dent Geometry

 Caliper or geometry in-line inspection tool accuracy depends on the type of sensor system used 
to make the measurements

– Mechanical feelers (fingers/rollers)

– Eddy current proximity sensors

– Ultrasonic compression wave transducers

 It’s difficult to verify the accuracy of caliper
or geometry in-line inspection tools in the 
field

– How much accuracy is needed?

 What about stress risers, their geometry, 
impact on material properties, residual stress?
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Uncertain Input Parameters – Material Properties 

 We often know the grade of pipe steel, but actual yield and tensile strengths are unknown

– E.g., it’s not unusual for actual yield strengths to exceed nominal values by 10% or more

 The denting process cold works the material, changing its mechanical properties

 Gouging, in particular, creates very localized damage with significant losses of ductility and 
toughness

 Many analyses are on vintage pipe materials, some of which have poor mechanical (toughness) 
properties
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Uncertain Input Parameters – Stresses and Strains

 For liquid lines in particular, the pressure loading history is complex, creating the need for 
simplifying assumptions, such as rainflow cycle counting (RCC)

– RCC ideally works in an elastic high-cycle environment, i.e., where damage related to plastic 
deformations do not accumulate
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Conclusion #1:
Highly Accurate Burst Pressure and Fatigue Life Estimates For 
Mechanical Damage Are A Pipe(liner’s) Dream!
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If We Cannot Accurately Estimate Burst Pressures and Fatigue 
Lives, What Can We Do?
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• Recognize our limitations: 

It may not be practical to accurately analyze complex dents 
with gouges and cracks…

But we can use existing and newly developed analysis 
models to prioritize mechanical damage for remediation
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Using Existing Models to Prioritize Mechanical Damage – Step 1

 Systematically study input parameters to learn how they affect the calculated burst pressure or 
remaining lives – Knowing where changes in input parameters significantly affect calculated 
fatigue lives and burst pressures will guide us to where we need better input data:

– Dent shape and geometry – Caliper tool improvements

– Actual material properties – Better understanding of how post yield behavior influences failure

– Stresses – Better understanding of residual and active stress fields

– Stress concentrations and their geometries and characteristics – Better SCFs, better ILI 
capabilities

– Pressure at which dent was formed – Fundamental understandings of how rerounding affects 
damage severity

– Analysis model inaccuracies and biases – Informed safety factors for analyses
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Using Existing Models to Prioritize Mechanical Damage – Step 2

 Learn which uncertainties cannot be overcome

– If uncertainties mean a given mechanical damage could be critical, it should be treated as a 
short-term threat to integrity

– Is a dent/gouge combination with cracking always an integrity threat?

– Identify classes of damage that have such high uncertainty that they should be treated as a 
short- or mid-term threat

 Use existing models to guide the prioritization and urgency associated with remaining defects

– How important is it to remediate immediately versus sometime in the future?
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Using Existing Models to Prioritize Mechanical Damage – Step 3

 Identify classes of mechanical damage that are not serious threats to integrity

– Does a 6% dent with 20% corrosion significantly threaten pipeline integrity?

– Limited test data suggest the impact is small

 Simplify, simplify, simplify 

– If analysis procedures can’t be easily implemented, they won’t be used
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Using Existing Models to Prioritize Mechanical Damage – Step 4

 Identify the highest priority defects, then embark on a continuous improvement campaign

– Use in-line inspection and/or release history to guide the number of defects to address each 
reassessment interval
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Summary

 Existing analysis tools cover most of the mechanical damage and recent models improve our 
understandings, but most models don’t provide guidance on how sensitive the results are to input 
parameters

– Use the existing tools to quantify the impacts of input parameters, thereby identifying which 
parameters are most important

– Use uncertainty analyses to account for other variabilities

 Learn which classes of damage cannot be accurately assessed due to input uncertainties, and 
treat these as possible near-term threats

 Learn which classes of damage are benign – identify when and where damage can be accepted 
using simplified analyses

 Build integrity management programs around continuous improvement, identifying the highest 
priority defects for remediation
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Thank you for listening!
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