

Pipeline Design, Construction & Operations Technical Committee

Damage Prevention

Rick Gailing Southern California Gas Company

Research & Development Forum Washington, D.C. December 11, 2003

DC&O Mission Statement

Develop safe, environmentally responsible, cost-effective and reliable solutions for the design, construction, and operation of energy pipelines

Key Emphasis Areas

- > Offshore
- Onshore & Arctic
- Damage Prevention & Detection
- Reliability-Based Design & Assessment
- > Integrity Practice Standardization

Technical Programs (2001 – 2004)

1.	Prevention of Third Party Damage	\$1,305k
2.	Implementing Integrity Standards	\$3,060k
3.	Reliability-Based Design Alternatives	\$918k
4.	Determination of Max. Safe Surface Loads	\$994k
5.	Leak Detection and Notification	\$350k
6.	Prevention of Critical Pipeline Strains	\$1,363k
7.	Solutions for Adverse Crossings	<u>\$245k</u>
		\$8,235k

Damage Prevention

> Addressed by all seven technical programs

> Categorized into four areas:

- Integrity Assessment for Operating and External Loads
- Mechanical Damage
- Industry Standards Development
- Human Factors (new)

Current Projects

Surface Loading

- effects of non-typical loading conditions on buried pipelines
- centrifuge modeling of pipe stress from extreme loads
- effects of static and cyclic surface loadings on the performance of welds in pre-1970 pipelines

What's Needed

Surface Loading

- Calibrate improved FEM techniques to full-scale test data
- Expand database for varied load conditions, pipe parameters, soil types and cover depths using FEM
- Develop tools to assess extreme surface loads on pipelines at various cover depths

Current Projects

Structural Integrity

- local buckling and collapse of corroded pipelines
- wrinkle bend integrity study
- decompression response of high-pressure natural gas pipelines under rupture/blowdown conditions

Past and Current Projects

Environmental Forces

- integrity assessment of exposed and unburied pipelines in river channels
- pipeline on-bottom stability
- seismic design and assessment guidelines
- satellite-based ground movement monitoring

Technology for Energy Pipelines

Technology for Energy Pipelines

Technology for Energy Pipelines

40cm	
30cm	
20cm	
10cm	

Ground Subsidence Along SoCalGas ROW due to Belridge Oil Production

February 24 to September 29, 2001.

Technology for Energy Pipelines

Technology for Energy Pipelines

Satellite-Based Ground Movement Monitoring

- Mature service with several providers
- Reliable measurements
- Applicable to most right-of-ways (arid to semi-arid regions ideal)
- Radar reflectors required in regions with moderate to dense vegetation
- Successful pilots conducted
- Large data archive covering most regions back to 1992
- Cost effective when multiple rights-of-way are covered in a single satellite image
- Very cost effective in remote regions
- New satellites are bringing costs down (~30% less than 2002)

What's Needed

- more satellites: closer intervals, more images, reduced cost
- enhanced radar imagery resolution
- enhanced imagery processing for larger areas
- enhanced software for automatic detection and notification
- company-specific pilots to demonstrate benefits
- tests to determine if reflectors are required

Past and Current Projects

- pipeline design for mechanical damage
- reliability-based pipeline design for mechanical damage
- reliability-based prevention of mechanical damage to pipelines
- reliability-based planning of inspection and maintenance
- effectiveness of new prevention technologies for mechanical damage
- real-time acoustic monitoring
- detection of third-party encroachment using satellite-based remote sensing technologies
- automated detection of encroachment events using satellites

- Satellite-Based Third Party Encroachment Monitoring
 - Capabilities and performance continue to improve
 - Automated detection rates approaching human performance
 - New satellites bring new levels of performance
 - Optical satellites close to 'people' detection
 - Radar satellites similar to optical resolution to be launched in 2005
 - Radar satellites essential for operations in cloud areas
 - High imagery cost vendors must become part of overall service provision to make service viable in the long term

What's Needed

- More satellites / lower imagery cost
- Enhanced imagery resolution & processing
- Higher accuracy rate (less false calls)
- Alternatives to satellite monitoring (new platforms)
- High speed processing chain required for full operation
- Framework for integration with one-call and 1st/2nd party coordination
- Pilot Projects:

Short duration (1 month) pilots have been successful Long duration (6 month) pilots required to demonstrate full benefits

RADARSAT-

What's Needed

- Best practices compendium with current and emerging technologies to prevent mechanical damage
- Effective methods for monitoring offshore pipelines

Implementing Integrity Standards

- Provide draft language for the periodic integrity assessment and management of threats to pipelines
- Develop supporting standards for the Integrity Management Program
- Provide foundation technical reports to ASME, ASNT, NACE, and other Standards Development Organizations (SDOs)

Projects

Complete

- ASME B31.8S Managing System Integrity of Gas Pipelines
- API 1162 Communications for Integrity Management Program
- Acceptance criteria for mild ripples in pipeline field bends

In ballot

- API RP1163 - ILI Qualification Standard

> Projects

Continuing

- ILI Personnel Qualifications Standard framework for qualification of data interpreters – ASNT ILI-2003
- Conducting analysis of industry incidents
- Conducting analysis of one-call performance
- Developing industry-performance metrics

Initiated

- ASME B31.8Q Operator Qualification Standard
- Study on fatigue as a root cause for pipeline failure

What's Needed

- Standards organizations to adopt and incorporate acceptance criteria for mild ripples in pipeline field bends into existing codes and standards
- Develop standards for RBDA for gas, liquid, Arctic pipelines

Human Factors

Human Factors Analysis of Pipeline Control Room Operations and Procedures

- Identify recurring human factors that have the potential to compromise the ability of controllers to effectively recognize and respond to leaks
- Identify strategies that would cost-effectively reduce the likelihood of leaks, accidents, shut-downs or other incidents associated with the identified human factors

Contact Details

Rick Gailing (213) 244-5404 rgailing@semprautilities.com

Pipeline Research Council International, Inc. <u>www.prci.org</u>