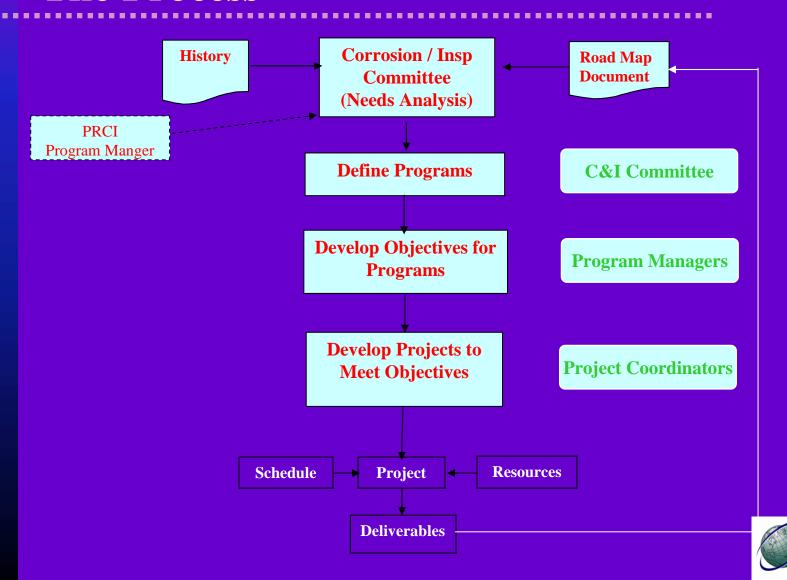
Prevention

R&D Forum
December 11/12, 2003

Jeff Didas - Colonial Pipeline



Strategic Objectives

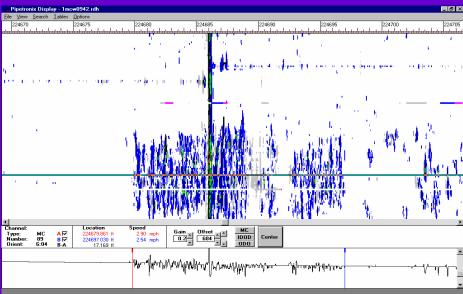
- 1. Develop programs to maintain integrity
 - Reduce Corrosion Maintenance costs
 - Improve ILI tools
- 2. Develop programs to influence regulatory requirements associated with safety & integrity
 - Support integrity and Direct Assessment initiatives
- 3. Develop programs to reduce capital costs of new pipelines
 - Improve Corrosion Control Systems

The Process

The Road Map

- ☐ Program Name
- □ Program Description
- □ Background
 - ☐ History of previous projects
- □ Objectives
- □ Projects
- Deliverables
- □Schedule / Cost

Program Name	2004 Goal	Co Fund	Pertain to Liquids	2005	
Mechanical Damage	586	865	70%	Mort. 250	
Non Piggable Pipelines	1220	500	98%	355	
Shielded Pipe	356	450	100%	100	
Internal Corrosion	545	980	10%	200	
Assessment Intervals	175	0	100%	0	
scc	415	0	100%	65	
CP Effectiveness	390	265	100%	150	
Total	3696	3060	91%	1120	

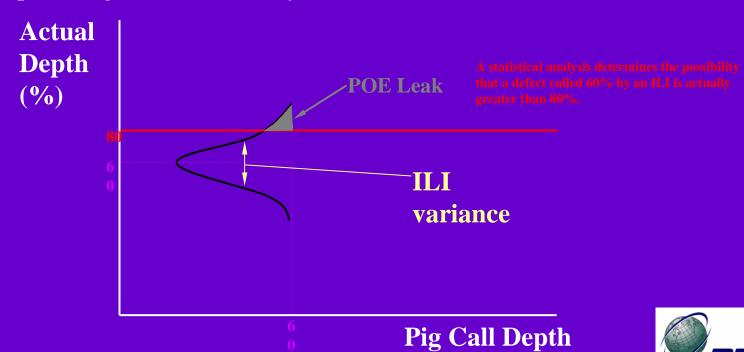


Optimize Integrity Assessment Intervals

Description:

Establish a sound basis for estimating integrity evaluation intervals for the threats of internal and external wall loss corrosion. Integrity inspections come with variable measurement uncertainties and a probability of missing defects. Integrity re-evaluation intervals require an estimate of the largest unexcavated defect remaining and the

corrosion kinetics.



Optimize Integrity Assessment Intervals

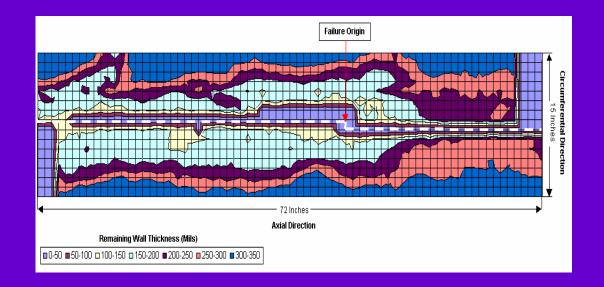
Description: (Continued)

A standard is needed for estimating corrosion rates from prior history, including inspection and bell hole records, coupons, etc that provides greater assurance that a real corrosion rate was estimated other than a simple straight line from the year of construction.

 $(\frac{0}{0})$

Optimize Integrity Assessment Intervals

Schedule / Cost:


- 4 Year \$825K
- 2004 Funding \$175K

Protect Shielded Pipe and Enhance Environmental Corrosivity Models

Description:

- Detect and mitigate active corrosion at areas shielded from cathodic protection using above ground techniques
- Enhance use of voltage and current techniques to assess performance of cathodic protection systems (CP and coatings).

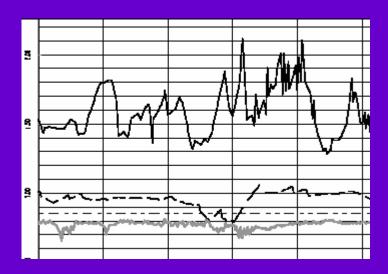
Protect Shielded Pipe and Enhance Environmental Corrosivity Models

2003 Projects:

- Efficient Use of Cathodic Polarization Criteria (\$100K)
- Coupon for Disbonded Coating (\$200K) (BAA Potential DOT Cofunding) (\$50K)
- High CP Potential Effects on Pipelines (\$80K)
- Mitigation of MIC Using CP including under Disbonded Coating (\$84K)
- CP Shielding Gap Analysis
- Evaluation & Comparison of Soil Resistivity Techniques
- MIC Investigation of Correlating Soil & SCC Initiation Phenomena

Protect Shielded Pipe and Enhance Environmental Corrosivity Models

Schedule / Cost:


- 5 years \$4,500K
- 2004 Funding \$365K

Improve CP System Effectiveness

Description:

Improve cathodic protection (CP) by defining the impact of high resistivity soils and increased coating degradation on performance monitoring.

Improve CP System Effectiveness

2003 Projects:

- > Permanent Reference Electrodes Test Program
- > Determine under what conditions AC corrosion is a problem in typical power line corridors.
- Characterizing Coating Performance with Varying Surface Preparations
- > Effective Coating Removal During Investigative Excavations

Improve CP System Effectiveness

Schedule / Cost:

- 5 Year \$1,200K
- 2004 Funding \$390K

Gaps / Additional Research Needs

- External Corrosion Rates to Determine Reassessment Intervals
- Internal Corrosion Rates to Determine Reassessment Intervals
- Others?

Summary

- Various Programs Which Address Operators and Regulators Concerns
- Consensus Process
- Broad Spectrum of Input by Researchers, Gas
 Pipelines, Liquids Pipelines and Regulators
- Road Map to Ensure Focus

