

Pipeline Design, Construction & Operations Technical Committee

Arctic Pipelines: Opportunities and Challenges for Technology

Joe Zhou TransCanada PipeLines Limited

New Construction, Materials and Welding Research & Development Forum Washington, D.C. December 2003

DC&O Mission Statement

Develop safe, environmentally responsible, cost-effective and reliable solutions for the design, construction, and operation of energy pipelines

Key Emphasis Areas

- Onshore & Arctic
- Offshore
- Damage Prevention and Detection
- Reliability-based Design and Assessment
- Integrity Practice Standardization

Technical Programs (2001 – 2004)

1.	Prevention of Third Party Damage	\$1,305k
2.	Implementing Integrity Standards	\$3,060k
3.	Reliability-based Design Alternatives	\$918k
4.	Determination of Max. Safe Surface Loads	\$994k
5.	Leak Detection and Notification	\$350k
6.	Prevention of Critical Pipeline Strains	\$1,363k
7.	Solutions for Adverse Crossings	<u>\$245k</u>
		\$8,235k

Technology for Energy Pipelines

Expectations for Arctic Pipelines

Economically optimized

– cost minimized

High level reliability

- limited access and continuous services

High level of efficiency

- high pressure and rich gas

Environmental impact minimized

low temperature, environmental mitigation and reclamation

New Design Concept

Chilled large diameter gas pipelines

- maintain permafrost
- control erosion

Ultra high pressure

- large throughput
- efficiency

Life cycle reliability

- integration of design, construction & maintenance
- acceptable reliability

Technology Development

Design methodology

- reliability-based design

Quantify loads and loads and load effects

- unique loads to Arctic pipelines

High strength material

- tensile and compressive strain limits, fracture control

Construction technology

 hydrotest, trenching, HDD, buoyancy control, welding and inspection

- Quantifies the reliability for all relevant "failure" conditions (limit states)
- Takes account of all mitigation measures:
 - pipe material and geometric e.g. grade, WT
 - inspection e.g. pig runs, ROW surveillance
 - protection e.g. burial
- Adaptable to include unique design conditions and new technology
- Optimization over life cycle to achieve acceptable reliability/risk levels

➡ PRCI has sponsored a suite of projects, e.g.

- limit states design framework for pipelines
- evaluation of pipeline design factors
- reliability-based prevention for mechanical damage
- reliability-based design for mechanical damage
- remote and automatic main line valve technology assessment
- reliability-based planning of inspection and maintenance
- development of seismic design guidelines
- development of reliability-based design and assessment guidelines

Reliability-based design and assessment (RBDA)

- Design and operate pipeline to maintain the predetermined reliability targets throughout its operating life for all relevant limit states
- Reliability targets, as the minimum requirement, are calibrated to acceptable safety criteria
- Business needs and life cycle cost optimization could raise reliability targets even further

Path forward

- complete the development of RBDA guidelines
- need to develop RBDA standards in both U.S. and Canada based on wide consensus from the industry and the regulatory communities
- acceptance and adoption of RBDA standards by the regulators and industry
- application and implementation in arctic pipelines
- extend the RBDA methodology to pipelines for services other than natural gas

- Challenging environment for Arctic pipelines
 - frost heave and thaw settlement
 - slope movement
 - seismic loads including ground shaking, landslide and fault displacement

Evaluating and quantifying the processes and magnitudes of the all relevant loads

- understand the mechanisms
- collect data and establish databases
- develop predictive models
- estimate the variability of the predicted loads

- Predicting the load effects on pipelines in terms of stress, strain, displacement, etc.
 - understand load transfer mechanisms from ground to pipeline
 - quantify the transferred loads in terms of process, distribution and magnitude
 - develop models for prediction of pipeline response up to the failure conditions

➡ PRCI has sponsored a suite of projects, e.g.

- experimental modeling of frost heave and thaw settlement
- seismic design guidelines
- pipe-soil interaction models for pipelines in permafrost
- improved models for pipe-soil interaction
- analysis and guidelines for deep water risers
- pipeline on-bottom stability
- effect of non-typical loading conditions on buried pipelines
- effect of static and cyclic surface loading on pipelines

Path Forward

- collect field and lab data to enhance databases and understanding of load mechanisms
- improve the models for quantifying loads to reduce uncertainty
- extend the models for pipeline response to predict the true failure conditions

- North American gas demand continues to increase
- System pressure continues to rise
- New gas supply are being developed
- Material is one of two major capital cost components

Compressive strain limit

local buckling behavior

Tensile strain limit

 fracture mechanics and defect assessment

Fracture arrest

 fracture behavior and gas decompression behavior

PRCI sponsored numerous projects, e.g.

- local buckling of pipes
- local buckling of corroded pipes
- acceptance criteria for mild ripples in field bends
- guidelines for tensile strain limits
- decompression response of high pressure pipelines

Path forward

- extend models and database to high strength pipes and high pressure operations
- increase the compressive strain limits by utilizing the post-buckling capacity

Construction is a major capital cost component

Productivity is the key

- trenching
- HDD
- pressure test
- buoyancy control
- welding and inspection

Trenching by trenchers has major advantages

- high productivity
- better trench
- less loss of backfill
- minimum disturbance

Need to understand

- conditions that trenchers work well
- productivity for various ground conditions

- Pressure test is a major challenge for Arctic pipelines
 - limited water supply
 - heating or additives (e.g. glycol)
 - environmental concerns for disposal of water
- Low cost alternatives needed
 - air tests
 - enhanced QA and inspections

HDD is common in typical construction

HDD in permafrost has challenges

- thawed/frozen interface
- stability of the drilling path
- further study and field tests are required

- Weight-based buoyancy control has challenges in transportation
- Cost effective alternatives needed
 - screw anchors
 - installation and design method for permafrost area

Summary

- Arctic pipelines presented significant challenges and opportunities
- Focused and well planned R&D leads to technologies and innovative solutions

Technology for Energy Pipelines

Contact Details

Joe Zhou TransCanada PipeLines (403) 920-7227 joe_zhou@transcanada.com

Pipeline Research Council International, Inc. <u>www.prci.org</u>

- Welding and inspection impact the productivity
- High levels of quality and consistency are required
- Mechanized welding and UT inspection
 - extend to high strength pipe
 - increase productivity

