Pipeline R&D Challenges Track 4 Mitigation and Repair

General Themes of Challenges (* activity listed twice)

- Cost Efficiency (1, 3, 4, 11*, 15, 16*, 28, 29*)
- Decision Basis/Acceptance Criteria (9, 10, 18, 21, 29*)
- Mitigation or Repair Concerns Requiring Innovative Technology Solutions (6, 16*, 22, 25, 27, 30)
- Improved Practices (14, 17, 19, 20, 24)
- Regulatory Acceptance of Existing Techniques (5, 11*)
- Techniques to Facilitate Permitting (7, 13)
- Treated in Other Tracks (2→Tr 3; 8→Tr 2; 23→Tr 3; 26→Tr 3)
- No General Theme (12)

Characterization

- Not relevant to R&D (A)
- Work in progress, expect resolution (B)
- Work in progress, more work needed (C)
- Little or no work ongoing (D)
- Not worth pursuing or redundant (E)

Challenges/Activity Areas

- 1. Developing acceptable (to the regulator) and enhanced on-line repair techniques to avoid line shutdown (<u>e.g.</u>, in-service welding, coating replacement, sleeves) (C)
- 2. Improving small leak detection capability
 - Liquid transmission (D)
 - Gas distribution (D)
- 3. Mechanisms for internal pipeline repair (<u>e.g.</u>, various polymeric liners); consider leak prevention vs. reinforcement vs. isolation (D)
- 4. Cheap, efficient, safe and quick techniques to dig bell holes (C)
- 5. Acceptance and application of repair methods for acetylene girth welds (D)
- 6. Improved methods of repair/remediation of cased crossings (C)
- 7. Accelerated means for obtaining the permits especially T&E and cultural issues (A)
- 8. Better mitigation of contaminants affecting pipeline operations and product quality (C)
- 9. Criteria (<u>e.g.</u>, risk acceptance) for managing pipelines found to contain large numbers of defects (A) possible project related to acceptability of lining pipe
- 10. Risk-based repair criteria that acknowledge pipe characteristics (B)
- 11. Economic and technically valid repair practices for pipelines operating at less than 30% SMYS (current practices and requirements targeted for higher stress lines are overly conservative) (D) for distribution

- 12. Evaluate the benefits and barriers to establishing go-team repair crews that specialize in mitigation and repair (A)
- 13. Develop rapidly implementable, small foot print repair site access and repair techniques that can be approved in advance by permitting agencies (C)
- 14. Improved techniques for operations & maintenance management (<u>e.g.</u>, noteworthy practices for managing SCC) (A)
- 15. Extend the range of economically attractive inservice repair solutions for pipelines (B or C)
- 16. Internal repair robots (C)
- 17. Repair asphalt not to disrupt the infrastructure(C)
- 18. Establish stronger engineering basis for reassessment interval (C)
- 19. Approach to measuring the effectiveness of CP system (external MIC, disbonded coating) (C)
- 20. Compile practices that have been successfully applied to mitigate SCC (C or D)
- 21. Techniques for life prediction given the presence of SCC (crack depth difficult to characterize) (C)
- 22. Development of techniques for recoating (surface preparation, application) (C)
- 23. Characterization of coating deterioration with presence of shielding, disbonded coating (SCC, EC) (C or D)
- 24. Characterization of "appurtenances" (<u>e.g.</u>, sleeves, weld-on stopple, drips): When is removal

needed (decision basis)? What information is needed to make decision? Strengthening inspection techniques? (D)

- 25. Alternative solutions to disbonded coating (D)
- 26. Above ground method for detecting disbonded coating (C or D)
- 27. Develop standardized methods for identifying/locating repairs (<u>e.g.</u>, clock spring, other repairs); possible use of "smart chips", gopher vision (see Terry Boss) (C)
- 28. Improved recoating techniques (C)
- 29. Economic and acceptable (to the regulator) techniques for repair of small leaks (D)
- 30. Evaluation of above-ground storage tank bottom design effectiveness (C)
- 31. User friendly tool for degaussing (D)

Pipeline R&D Forum Summary from <u>Mitigation & Repair</u> Track Session December 12, 2003

Mitigation: Prevent further degradation of the pipeline

Red color indicates either not relevant to R&D or resolution expected based on current R&D

Challenges	R&D Opportunities	Reason(s) to Pursue
1. Cost Efficiency of	1. On-Line Repair Techniques	Potential to expedite permitting
Mitigation & Repair		Avoid supply disruption
	3. Internal Pipeline Repair	Eliminate above-ground
		disruption
	4. CESQ Bell Hole Techniques	Potential to expedite permitting
	11. Repair Practices for Low	
	Stress Pipe	
	15. In-Service Repair	Avoid supply disruption
	Techniques (see 1 above)	
	16. Internal Repair Robots	Avoid supply disruption
	28. Improved Recoating	Extend service life
	Techniques	

	29. Repair of Small Leak	Mitigate environmental damage
2. Decision Basis,	9. Repair of Pipeline with	
Acceptance Criteria	numerous defects (A)	
	10. Repair Criteria for pipes of	
	small diameter or unusual	
	materials (B)	
	18. Engineering Basis for	Optimize integrity expenditures
	Reassessment Interval	Minimize integrity threats
	21. Life Prediction with SCC	
	29. Repair of Small Leak	Mitigate environmental damage
3. Mitigation or Repair	6. Repair/Remediation of Cased	Demonstration of integrity for
Concerns Requiring	Crossings	non-piggable pipe
Innovative Technology		
Solutions		
	16. Internal Repair Robots	
	22. Recoating Techniques	
	25. Solutions to Disbonded	
	Coating	
	27. Identification/Location of	
	Repairs	
	30. Effectiveness of Storage	
	Tank Bottom	

	31. Degaussing Tool	Shorten time to repair
4. Improved Mitigation &	14. Improved O&M	
Repair Practices	(Noteworthy Practices) (A)	
	19. Measuring CP Effectiveness	Answer why continuing EC
		failures with CP
	17. Non-Disruptive Asphalt	Eliminate above-ground
	Repair	disruption
	20. SCC Mitigation	
	24. Characterization of	Effective risk modeling
	"appurtenances"	techniques needed
5. Regulatory Acceptance	5. Repair of Acetylene Girth	
of Existing Techniques	Welds	
	11. Repair Practices for Low	
	Stress Pipe	
6. Techniques to Facilitate	7. Accelerated Permitting	Supports cost efficient
Permitting	Techniques (see 13 below)	mitigation and repair
	13. Low-Disruption Repair for	Supports cost efficient
	Advanced Permitting (related to	mitigation and repair
	1 & 4 above)	