Compressor and Pump Station Research

DOT/PRCI Pipeline R&D Forum
December 11-12, 2003
Washington, DC

Sam L. Clowney
El Paso Pipeline Group
Role of Compressor & Pump Stations

- Force natural gas or liquids along the pipeline (to overcome friction losses)
 - More than 1600 compressor stations on interstate gas pipelines
 - Stations spaced ~50-75 miles apart
- ~15 MM Horsepower in gas service
 - ~5700 Reciprocating engines
 - 9 MM HP – Large-bore, slow speed units driving reciprocating compressors
 - ~1100 Gas turbines
 - 6 MM HP - drive centrifugal compressors
Pipeline Compressor & Pump Stations

- Multiple units at each station
 - Added as system capacity was expanded
 - A mix of old and new, different sizes and types
 - Units dispatched according to demand

- Pipeline flow conditions can vary greatly from initial design basis
 - “Realtime” gas markets, new powerplant loads
 - Increased operational flexibility is a necessity
Pipeline Compressor & Pump Stations

- If the heart stops beating, the condition of the arteries doesn’t matter much
 - Gas won’t flow without compression
 - Liquids won’t move without pumps
- **Primary threat to compressor assets**
 - **Environmental Compliance**
 - NOx, Hazardous Air Pollutants
 - This threat to the “inside the fence” infrastructure is as significant as the integrity threat “outside the fence”
Compressor R&D Overview

- **Mission Statement**
 - “Minimize the operating costs and capital requirements of compression service while meeting market demands and all applicable environmental regulations.”
R&D Program Drivers

- **Horsepower Asset Management**
 - Least-Cost Environmental Compliance
 - Operational Life Extension

- **Operating Cost Reductions**
 - Fuel consumption
 - Maintenance expense

- **Operating Flexibility**
 - Minimize the extent to which new environmental regulations constrain unit operating ranges
Specific Challenges

- **Reciprocating Engines**
 - The mainstay compressor engines are no longer manufactured (2 and 4-stroke integrals)
 - Pipelines themselves are responsible for engine technology & environmental compliance innovation
 - If nothing done, would be forced to install electric compression to achieve air compliance
 - Replacement costs of ~$13.5 Billion
 - Pipeline capital required for integrity management, pipeline expansions and balance sheet repair
 - Electric units carry system security issues
 - Logistics of replacement are very difficult
Age of Reciprocating Engine Fleet

9 MM Total Horsepower

(K HP)

Unit Size

- >6000 HP
- 3000-6000 HP
- 2000-3000 HP
- 1000-2000 HP

- >50 yrs
- 40-49 yrs
- 30-39 yrs
- <30 yrs

9 MM Total Horsepower

1200
1000
800
600
400
200
Specific Challenges

- **Gas Turbines**
 - Extremely aggressive emissions requirements are shortening product development cycles
 - Industry emphasis is to expedite field testing to characterize equipment performance
 - Gas turbine blades are high O&M cost item
 - Developing condition-based replacement criteria instead of existing calendar-based replacement criteria
The Big Picture

- Existing compressor infrastructure must be maintained
 - Over half of the recip HP is >40 years old
 - Over 80% is >30 years old
 - Recips face continual emissions pressure
 - Pipeline capital must be conserved for other needs

- Maintain vs. replace existing capacity?
 - $1.5MM/yr R&D program = 10 cents/HP/yr
 - Replacement at $1500/hp = $75/HP/yr for 20 years
The Big Picture

- **Compressor station O&M costs**
 - 56% of all pipeline maintenance costs
 - (Compressor fuel not included in this)
 - Compressor fuel use = 700 Bcf/yr
 - Cost of $3.1 Billion/yr (at $4.50/mmBtu)
 - An opportunity to make gas more competitive

- **Operating Flexibility**
 - Limited operating range cause high marginal costs of compression service
 - Additional units must be dispatched
 - Poor load factors, high amortized maintenance costs
 - High fuel consumption at part-load operation
Current Technical Program

- 2004 Budget: $1.375 MM
- 2003 Budget: $1.6 MM
- Program Elements
 - Improve reliability of low-NOx equipment
 - Increase margin of NOx compliance
 - Increase Operating Flexibility
 - O&M Cost Reduction
R&D Program: Reliability of Low NOx Technology

- Develop low emissions technology that is more robust and less maintenance-intensive than existing retrofit options

- Need/Driver
 - Meet stringent emissions standards when reciprocating engines eventually lose grandfathered status
 - Maintain long-term asset serviceability at modest cost. Replacement cost of single 2000hp unit = $3 MM. Reduce O&M expenses and improve availability of low-NOx retrofits

- Technical Approach/Deliverables
 - Develop very low-NOx compression ignition system (MicroPilot) for 2SLB engines by 2006
 - Expanded two-cycle engine testbed at CSU Engines Lab (Clark TLA to accompany Cooper GMV)
R&D Program: Increase Margin of Emissions Compliance

- Drive emissions further below permitted levels to avoid permit excursions and allow greater unit operating range.

Need/Driver
- Many NOx retrofits were purchased for their maximum reduction capabilities, often narrowing the operating range of the equipment and/or risking permit violations at off-design point operation or due to minor upsets.

Technical Approach/Deliverables
- Develop turbocharger maps to define range of turbo operating window for low-NOx performance.
- Obtain accurate measurement of air flow through engines via sensor embedded in turbocharger compressor diffuser.
R&D Program: Increase Operating Flexibility

- Enable horsepower to operate at rated capacity throughout the year.

Need/Driver

- Volatile market demands requires operation over a wider range of pipeline flows and ambient conditions.

Technical Approach/Deliverables

- Evaluate inexpensive options for closed-loop engine control components: Pressure, oxygen, NOx and knock sensors.
- Optimize turbocharger selection and performance
- Develop designs for optimized retrofit top-end of engine (cylinders, heads) for ultra-low NOx and HAPS and high efficiency.
R&D Program: O&M Cost Reduction

- Reduce the variable costs of compressor station operation

- Need/Driver
 - Compressor station maintenance = 56% of total system maintenance costs ($188MM of $336MM)

- Technical Approach/Deliverables
 - Remaining creep life of solid gas turbine blades
 - Identify rate of turbine blade metal degradation
 - Condition-based turbine blade replacement criteria is extremely valuable for PRCI members. $200K/engine savings over 6 years for a typical blade replacement deferral.
Key Ongoing Project

- **Turbocharger Optimization**
 - Conducted at industry-developed Turbocharger Testing and Research Facility of Kansas State U.
 - Most pipeline engines are turbocharged

- Turbocharger performance is central to engine emissions, operating range, O&M costs
 - Rigorous effort to define/develop
 - Models of air flow through pipeline engines
 - Standardized turbo performance measurements and metrics
 - Sources of turbo performance losses and subsequent component design improvement options
 - Engine/turbo integration issues and turbo selection models
 - Turbo maintenance practices
Key Ongoing Project

- **Micropilot ignition system for 2-stroke engines**
 - Cofunded with DOE and Woodward Governor
 - $1.7MM total, industry share = $700K
 - Woodward Governor Co. will commercialize
 - Targeting very low NOx, fuel savings, reduced O&M.
 - Oil injection (1%) provides very high-energy ignition jet to light off very lean charge
 - Reduced first cost vs. conventional low-emissions technologies
 - Concept derived from very large dual-fuel engines (Fairbanks-Morse, Wartsila)
 - Field test sites being identified now
Combustion Analysis
Colorado State University - Engines & Energy Conversion Laboratory

PV Diagrams
Stable Combustion

PV Diagrams
Near Lean Limit

IMEP
Stable Combustion

IMEP
Near Lean Limit
Key Ongoing Project

- **SoLoNOx Cold Ambient Emissions Testing**
 - Cofunded with Solar Turbines, $175K total project cost
 - Low-NOx gas turbine emissions at low-temperature ambients are very erratic, and can exceed permitted levels
 - ~500,000 HP of Solar units subject to low ambients
 - Continuous emissions and engine operating data being collected over two winters on Mars 100, Taurus 60, Centaur 40 & 50
 - Results will allow control system modifications that will maintain NOx compliance
Key Ongoing Project

- **Turbine Blade Non-Destructive Evaluation**
 - Conducted at SwRI to develop NDE technique for air-cooled blades (Rolls-Royce RB-211)
 - Extend life of blades by avoiding calendar-based blade replacement
 - Current inspection practice is very imprecise, causes needless blade replacement, yet misses some cracked blades entirely
 - Presently evaluating multiple NDE options
 - Critical crack size defined, this affects selection of method
 - Similar work on different blade types has proven extremely valuable to members
Key Ongoing Project

- **Ion Sensor**
 - In-cylinder combustion sensor
 - A combustion monitoring method that measures the ionic properties of cylinder gases
 - Can monitor and diagnose incipient misfire, poor air-fuel ratio control, early detonation
 - Main sensor for closed-loop engine control system and continuous combustion monitoring
 - Enabling technology for inexpensive emissions monitoring of NOx and CO
 - Entering into Beta-testing phase
Where do we go from here?

- **Pursue Electric Motor Emissions Parity**
 - Develop Retrofit Technology that approximates electric motor emissions levels, using optimized components in legacy recip engine blocks
 - Requires complete understanding of engine airflow and in-cylinder mixing and ignition phenomena
 - **Substantial improvements in engine performance via optimized components**
 - Repower & Uprate existing engine frames to meet incremental capacity demands without triggering Federal New Source Review
CFD Results with PLIF Validation
Colorado State University EECL
Where do we go from here?

- **Aggressive engine performance targets**
 - NOx: .25 to .5 g/bhp-hr
 - Fuel: approaching 5000 BTU/hp-hr
 - Maintenance interval: 10,000 hours
 - Management and Control
 - Self-diagnosing for maintenance needs & performance decay
 - Identifies the guilty component
 - Fully-automated for control and optimization across all ambient and operational conditions. Avoids misfire and detonation.

- **Result: 35% reduction in cost of compression**
 - Implement for < 1/3 the cost of new units
 - Conserves large amounts of capital
How do we get there?

Need continuation of

- Detailed combustion modeling
- Air flow modeling through engine
- Component adaptation & optimization
 - Ignition systems
 - Fuel delivery and injection systems
 - Turbochargers
 - Exhaust scavenging & inlet air system
 - Closed loop control systems
- “Systematic Engine Uprates”