Compressor and Pump Station Research

DOT/PRCI Pipeline R&D Forum December 11-12, 2003 Washington, DC

Sam L. Clowney El Paso Pipeline Group

Role of Compressor & Pump Stations

- Force natural gas or liquids along the pipeline (to overcome friction losses)
 - More than 1600 compressor stations on interstate gas pipelines
 - Stations spaced ~50-75 miles apart

~15 MM Horsepower in gas service

- ~ 5700 Reciprocating engines
 - 9 MM HP Large-bore, slow speed units driving reciprocating compressors
- ~ 1100 Gas turbines
 - 6 MM HP drive centrifugal compressors

Pipeline Compressor & Pump Stations

Multiple units at each station

- Added as system capacity was expanded
 A mix of old and new, different sizes and types
 Units dispatched according to demand
- Pipeline flow conditions can vary greatly from initial design basis
 - "Realtime" gas markets, new powerplant loads
 - Increased operational flexibility is a necessity

Pipeline Compressor & Pump Stations

- If the heart stops beating, the condition of the arteries doesn't matter much
 - Gas won't flow without compression
 - Liquids won't move without pumps
- Primary threat to compressor assets
 - Environmental Compliance
 - NOx, Hazardous Air Pollutants
 - This threat to the "inside the fence" infrastructure is as significant as the integrity threat "outside the fence"

Compressor R&D Overview

Mission Statement

 "Minimize the operating costs and capital requirements of compression service while meeting market demands and all applicable environmental regulations."

R&D Program Drivers

Horsepower Asset Management

- Least-Cost Environmental Compliance
- Operational Life Extension

Operating Cost Reductions

- Fuel consumption
- Maintenance expense
- Operating Flexibility
 - Minimize the extent to which new environmental regulations constrain unit operating ranges

Specific Challenges

Reciprocating Engines

- The mainstay compressor engines are no longer manufactured (2 and 4-stroke integrals)
 - Pipelines themselves are responsible for engine technology & environmental compliance innovation
 - If nothing done, would be forced to install electric compression to achieve air compliance
- Replacement costs of ~\$13.5 Billion
 - Pipeline capital required for integrity management, pipeline expansions and balance sheet repair
 - Electric units carry system security issues
 - Logistics of replacement are very difficult

Age of Reciprocating Engine Fleet

Specific Challenges

Gas Turbines

- Extremely aggressive emissions requirements are shortening product development cycles
 - Industry emphasis is to expedite field testing to characterize equipment performance
- Gas turbine blades are high O&M cost item
 - Developing condition-based replacement criteria instead of existing calendar-based replacement criteria

The Big Picture

Existing compressor infrastructure must be maintained

Over half of the recip HP is >40 years old
 Over 80% is >30 years old

Recips face continual emissions pressure

Pipeline capital must be conserved for other needs

Maintain vs. replace existing capacity?

- \$1.5MM/yr R&D program = 10 cents/HP/yr
- Replacement at \$1500/hp = \$75/HP/yr

for 20 years

The Big Picture

Compressor station O&M costs

- 56% of all pipeline maintenance costs
 (Compressor fuel not included in this)
- Compressor fuel use = 700 Bcf/yr
 - Cost of \$3.1 Billion/yr (at \$4.50/mmBtu)
 - An opportunity to make gas more competitive

Operating Flexibility

- Limited operating range cause high marginal costs of compression service
 - Additional units must be dispatched
 - Poor load factors, high amortized maintenance costs
 - High fuel consumption at part-load operation

Current Technical Program

2004 Budget: \$1.375 MM 2003 Budget: \$1.6 MM Program Elements Improve reliability of low-NOx equipment Increase margin of NOx compliance Increase Operating Flexibility O&M Cost Reduction

R&D Program: Reliability of Low NOx Technology

Develop low emissions technology that is more robust and less maintenance-intensive than existing retrofit options

Need/Driver

- Meet stringent emissions standards when reciprocating engines eventually lose grandfathered status
- Maintain long-term asset serviceability at modest cost. Replacement cost of single 2000hp unit = \$3 MM. Reduce O&M expenses and improve availability of low-NOx retrofits

Technical Approach/Deliverables

- Develop very low-NOx compression ignition system (MicroPilot) for 2SLB engines by 2006
- Expanded two-cycle engine testbed at CSU Engines Lab (Clark TLA to accompany Cooper GMV)

R&D Program: Increase Margin of Emissions Compliance

- Drive emissions further below permitted levels to avoid permit excursions and allow greater unit operating range.
- Need/Driver
 - Many NOx retrofits were purchased for their maximum reduction capabilities, often narrowing the operating range of the equipment and/or risking permit violations at off-design point operation or due to minor upsets.
- Technical Approach/Deliverables
 - Field qualify new Solar-Mars ABC combustor liner by 2004.
 - Develop turbocharger maps to define range of turbo operating window for low-NOx performance.
 - Obtain accurate measurement of air flow through engines via sensor embedded in turbocharger compressor diffuser.

Technology for Energy P

R&D Program: Increase Operating Flexibility

- Enable horsepower to operate at rated capacity throughout the year.
- Need/Driver
 - Volatile market demands requires operation over a wider range of pipeline flows and ambient conditions.
- Technical Approach/Deliverables
 - Evaluate inexpensive options for closed-loop engine control components: Pressure, oxygen, NOx and knock sensors.
 - Optimize turbocharger selection and performance
 - Develop designs for optimized retrofit top-end of engine (cylinders, heads) for ultra-low NOx and HAPS and high efficiency.

R&D Program: O&M Cost Reduction

- Reduce the variable costs of compressor station operation
- Need/Driver
 - Compressor station maintenance = 56% of total system maintenance costs (\$188MM of \$336MM)
- Technical Approach/Deliverables
 - Remaining creep life of solid gas turbine blades
 - Identify rate of turbine blade metal degradation
 - Condition-based turbine blade replacement criteria is extremely valuable for PRCI members. \$200K/engine savings over 6 years for a typical blade replacement deferral.

Turbocharger Optimization

- Conducted at industry-developed Turbocharger Testing and Research Facility of Kansas State U.
- Most pipeline engines are turbocharged
- Turbocharger performance is central to engine emissions, operating range, O&M costs
 - Rigorous effort to define/develop
 - Models of air flow through pipeline engines
 - Standardized turbo performance measurements and metrics
 - Sources of turbo performance losses and subsequent component design improvement options
 - Engine/turbo integration issues and turbo selection models
 - Turbo maintenance practices

Micropilot ignition system for 2-stroke engines

- Cofunded with DOE and Woodward Governor
 - \$1.7MM total, industry share = \$700K
 - Woodward Governor Co. will commercialize
- Targeting very low NOx, fuel savings, reduced O&M.
 - Oil injection (1%) provides very high-energy ignition jet to light off very lean charge
 - Reduced first cost vs. conventional low-emissions technologies
 - Concept derived from very large dual-fuel engines (Fairbanks-Morse, Wartsila)
- Field test sites being identified now

Combustion Analysis

Colorado State University - Engines & Energy Conversion Laboratory

PV Diagrams Stable Combustion

Near Lean Limit

13.5" Hg, Cylinder 2, Multistrike

IMEP Near Lean Limit

SoLoNOx Cold Ambient Emissions Testing

- Cofunded with Solar Turbines, \$175K total project cost
- Low-NOx gas turbine emissions at lowtemperature ambients are very erratic, and can exceed permitted levels

~500,000 HP of Solar units subject to low ambients

- Continuous emissions and engine operating data being collected over two winters on Mars 100, Taurus 60, Centaur 40 & 50
 - Results will allow control system modifications that will maintain NOx compliance

Turbine Blade Non-Destructive Evaluation

- Conducted at SwRI to develop NDE technique for air-cooled blades (Rolls-Royce RB-211)
 - Extend life of blades by avoiding calendar-based blade replacement
 - Current inspection practice is very imprecise, causes needless blade replacement, yet misses some cracked blades entirely
- Presently evaluating multiple NDE options
 - Critical crack size defined, this affects selection of method
- Similar work on different blade types has proven extremely valuable to members

Ion Sensor

- In-cylinder combustion sensor
 - A combustion monitoring method that measures the ionic properties of cylinder gases
 - Can monitor and diagnose incipient misfire, poor airfuel ratio control, early detonation
 - Main sensor for closed-loop engine control system and continuous combustion monitoring
- Enabling technology for inexpensive emissions monitoring of NOx and CO
 - Entering into Beta-testing phase

Where do we go from here?

Pursue Electric Motor Emissions Parity

- Develop Retrofit Technology that approximates electric motor emissions levels, using optimized components in legacy recip engine blocks
 - Requires <u>complete</u> understanding of engine airflow and in-cylinder mixing and ignition phenomena
 - CFD modeling of combustion. New ignition & sensors.

Substantial improvements in engine performance via optimized components

 Repower & Uprate existing engine frames to meet incremental capacity demands without triggering Federal New Source Review

CFD Results with PLIF Validation

Colorado State University

Where do we go from here?

Aggressive engine performance targets

- NOx: .25 to .5 g/bhp-hr
- Fuel: approaching 5000 BTU/hp-hr
- Maintenance interval: 10,000 hours
- Management and Control
 - Self-diagnosing for maintenance needs & performance decay
 - Identifies the guilty component
 - Fully-automated for control and optimization across all ambient and operational conditions. Avoids misfire and detonation.

Result: 35% reduction in cost of compression

- Implement for < 1/3 the cost of new units</p>
- Conserves large amounts of capital

How do we get there?

Need continuation of

- Detailed combustion modeling
- Air flow modeling through engine
- Component adaptation & optimization
 - Ignition systems
 - Fuel delivery and injection systems
 - Turbochargers
 - Exhaust scavenging & inlet air system
 - Closed loop control systems
- "Systematic Engine Uprates"

