gti

Research on Detection and Assessment Gas Technology Institute

Pipeline Research and Development Forum

Washington, DC

11 December 2003

Albert Teitsma Program Manager Pipeline Operations Technology Gas Operations Technology

Three Types of Pipeline Threats

<u>Static</u>

Manufacturing related defects Welding/Fabrication related

Time Dependent

Corrosion related

Environmental cracking

Random

Third party damage Incorrect operation

Outside force

qti

Technologies for Pipeline Integrity

> Geometry pigs

- > Low and high resolution MFL (magnetic flux leakage)
- > Circumferential MFL (a.k.a. Transverse MFL)
- > Ultrasonic inspection
- > Ultrasonic crack detection
- > Elastic wave vehicle
- > EMAT (electromagnetic acoustic transducer)

Technologies for Pipeline Integrity

- > Some mitigating technologies coming down the pipe
 - Improvements in in-line inspection technologies
 - Gas Coupled Ultrasonics
 - Remote Field Eddy Currents for unpiggable pipelines
 - Magnetic Telescope for unpiggable pipelines
 - NoPig
 - Mechanical damage pigs
 - Pipeline right of way management
 - > Optical time domain reflectometry
 - > Acoustic monitoring and impedance spectroscopy
 - Smart Pipe

RFEC Inspection Vehicle for Unpiggable Pipelines

- Bypass valve and bore restrictions
- Inspect multi diameter pipes
- Go through back to back bends
- Go around tight bends and miter bends

Remote Field Eddy Current (RFEC) Inspection of Unpiggable Pipelines

- Simple exciter coil, less than 1/3rd of pipe diameter
- Sensor array adjusts to match pipe diameter while passing small openings
- Accuracy comparable to MFL

Unpiggable Pipelines

Comparison of Axial and Circumferential Signal Widths

Defect Line #3

Ultrasonic Inspection

gti

Gas Coupled Ultrasonics

- Direct measurement of wall thickness to a couple of percent
- Direct measurement of crack depths
- Already in use for non contact monitoring of burn victims

- Reduced sensitivity to material properties
- No liquids or wheels and not sensitive to stand off

High Pressure Chamber

Stepped Plate and Transducer

gti

Results: Ultran #1 – SecondWave

Current Status

- > Test new sensors from SecondWave
- > Work with Tuboscope to run the technology in an operating pipeline as a wall thickness measuring device
- > Continue sensor development with SecondWave and Weidlinger
- > Develop better methods for corrosion measurement
- > 2003 start looking at using GCUS for crack detection

Inspecting for Mechanical Damage

• Signals from standard MFL are inadequate

Combine Three Technologies

- Strong field Weak field
- Circumferential MFL
- Non linear harmonics

Magnetic Flux Leakage Inspection

Magnetic Flux Leakage Inspection

Circumferential MFL

High-Low Magnetization

Non-Linear Harmonics

Current Status

- Strong Weak field magnetization has been developed for evaluation for commercialization
- Circumferential magnetization has been developed for evaluation for commercialization
- > Non Linear Harmonics needs more development
- > Criteria for assessment of mechanical damage have been set out

Smart Pipe

•Joint project with INEEL

•Measure stress and stress location

•Proved feasibility