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Background 

 Challenge in pipeline damage diagnosis/prognosis and risk management 

 Fast and automated identification, classification, and quantification of 
various types of damage 

 Uncertainty quantification and reduction for accurate analysis and 
decision-making 

Project objectives: 
 Develop an automatic damage precursor identification methodology 

using Bayesian/maximum entropy network 

 Develop a reliability-based maintenance scheduling optimization 
framework for plastic pipeline systems 
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Structured light-based imaging analysis 

Schematic illustration of imaging analysis with structure light scanning a) raw image with inner wall damage; b) lighting ring profile at the damage 

site;  c) structure light image assisted feature identification; (raw image obtained from http://www.swri.org/3pubs/ttoday/fall02/smartpig.htm) 

 Inner pipe imaging using structured light and 3D reconstruction (MSU) 

 Automatic damage identification, risk assessment, and risk mitigation (ASU) 
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Prototype III: Multi-color multi-ring 
ESLiST 
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 Uniquely coded colored rings are 

produced by projecting a strong 

white light into a transparency paper 

slides  that is colored with ring 

patterns. 

 A group of convex and concave 

lenses are used to collimate the light 

beam and focus it on pipe inner wall. 

 



Results: Two-color two-ring 
ESLiST  
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Two separated rings with different colors and 
diameters are used to demonstrate the ability of 
the ESLiST 

Projection on flat surface Projection inside pipe 

Projected pattern 

Inner-wall cylindrical 
surface 

• Sample 162012-004 
- 2″ IPS DUPONT 
ALDYL-A PE2306, 
~38″ long, contains 
a squeeze-off point 
and a tee fitting 



Results: Two-color two-ring 
ESLiST  

7 
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Imaging processing for denoising 

Gaussian de-noise 

Gaussian de-noise 
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Machine learning and classification 

 Different damage images to train the classifier  

 

 

 

 

 
 Pros: No information loss and the accuracy increases 

 Cons: Large number of nodes and training needs longer time 
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Full imaging training and 
classification - 3 

 Naïve Bayes network with image input 

 High accuracy of damage detection 

 Near real-time computation 
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Diagnostics, prognostics, and risk 
management 

 Why we need this? 

 How to use this for 
decision making? 

 What is the return of 
investment? 

 What are the 
benefits for 
operators and 
regulators? 



Reliability-Based Maintenance Optimization 
(RBMO) for risk mitigation 
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RBMO formulation - 1 

 Terminology 

 Q groups of pipes  

 S deterioration stage (depending on a classification of 
damage level, e.g., crack length) 

 

 

 

 D(S,1) condition vector (percentage in each stage) 

condition 
states Excellent Very good Good fair poor very poor 

crack size  ≤ 1mm 
1mm ~ 
3mm  

3mm ~ 
5mm  

5mm ~ 
8mm  

8mm ~ 
15mm  ≥ 15mm 
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RBMO formulation - 2 

 Terminology: 

 Mm(S,S) maintenance transition matrix for method m 
(do nothing, repair, replace) 

 P(S,S) degradation matrix (related to specific physical 
mechanisms, e.g., fatigue or slow crack growth) 

 X(M,S) maintenance decision matrix 

 C(M,S) cost matrix  
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RBMO formulation - 3 

 Pipe condition estimation 

D(1×S)∙×Xm(1×S) gives a (1×S) matrix, 
meaning the percentage of samples in each 
condition that will have maintenance m 

The product of D×Xm, (1×S), times Mm(S×S) 
gives another (1×S) matrix, meaning the condition 
vector for those that have maintenance m done. 

The condition after maintenance, (1×S), 
times the degradation matrix gives the new 
predicted condition vector (1×S) for the 
group that has maintenance m done after ∆t. 

The sum over m gives the overall condition 
vector (1×S). 
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RBMO formulation - 4 

 The calculation for maintenance cost 

D(1×S)∙×Xm(1×S) gives a (1×S) matrix, 
meaning the percentage of samples in each 
condition that will have maintenance m 

Q times the product of D×Xm, (1×S), gives 
a quantity vector (1×S). Each value means 
the quantity of samples that will do 
maintenance m. 

The quantity vector (1×S) times the cost vector (1×S) gives a scaler 
meaning the total cost for doing maintenance m according to the decision X.    
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RBMO formulation - 5 

 Maximum condition status with constrained 
budget  

   Maximize total condition :  

   Constraint:  

 

 Minimize budget with constrained condition 
threshold 

   Minimize:  

   Constraint:  

( ,:)new m

m

D D X m M P   

( ,:) ( ,:)
m

Q D X m C m Budget   

Cos ( ,:) ( ,:)
m

t Q D X m C m   

( ,:)new m

m

D D X m M P RBCN    



Demonstration example - 1 

 Fatigue crack growth rate-based life prediction 
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 Stress intensity factor (SIF) 
 

(1) 
 The material fatigue crack growth curve can be expressed as 

(2) 
 

 Fatigue life N can be obtained as: 
 

(3) 
 
 

a: crack length; Y: geometry correction factor: N: fatigue life;   
ai: initial crack length: ac: critical crack length 
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Xiang Y, Lu Z, Liu Y. Crack growth-based fatigue life prediction using an equivalent initial flaw model. 
Part I: Uniaxial loading. International Journal of Fatigue,2010;32(2):341-349. 
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Demonstration example - 2 

 S=6 (number of condition states, 6 is excellent, 5 is very 
good,4 good,…) 

 Q=[6] (total quantity of pipes A and B) 

 M=3 (do nothing; repair; replacement) 

 C= 

 

 

 

 

 

300030001600160000

180016008006004000

000000_

654321

treplacemen

repair

nothingdo

tateconditions
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     P (        do nothing;        repair I;       repair II) 

 

 

 

 

 

 
 The budget in each mission= 

 [10000 8000 9000 12000 10000 8000 9000 8000 8000 9000 ]; 

 The total budget = $65000 

 The pipes in very poor condition is less than 5% after each mission 

Demonstration example - 3 
1P 2P 3P
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 Maintenance plan with different damage rates 
(case I higher rate and case II lower rate) 
 

 

 

 

 

 

Demonstration example - 4 
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Demonstration example - 5 
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 Above discussion only considers the 
maintenance cost 

 Consequence cost for distribution 
pipelines, what happens if failure 
happens? 

 Mapping with the geometric 
importance areas (hospital, public 
building, residential building, etc.) 

 Weighted optimization problem 

High consequence - 
larger weight 

Moderate consequence - 
medium weight 



Demonstration example - 6 

Monte Carlo Simulation for 
slow crack growth 

0.7127 0.2856 0.0018 2.808e-05 2.8871e-06

0 0.3296 0.4950 0.1473 0.0280

0 0 0.0457 0.3525 0.6018

0 0 0 0.0024 0.9976

0 0 0 0 1

P

 
 
 
 
 
 
  

Verification and validation for 
remaining life prediction 

Risk assessment and 
classification 

 Integrated anomaly detection, rate process modeling, 
probabilistic methods, and optimization algorithms  



Demonstration example - 7 

 Example with consequence weight: 

 G=3;  ~~~ 3 groups of pipe 

 Q=[100 100 100];  ~~ Number of samples in each group 

 Dgt=[0.1 0.2 0.5 0.15 0.05; 

           0.1 0.2 0.5 0.15 0.05; 

           0.1 0.2 0.5 0.15 0.05];  ~~~ initial condition 

 weight=[10 5 1]; 

 TTC=$500000 ~~~ total cost 

 Optimization is done using the generic algorithm 

 

 

 



Consider weighted group 

 Results: 

 New condition: 

 

 Cost for each group: 

 

0.6994 0.28506 0.0090 0.0032 0.0035

0.6883 0.2826 0.0123 0.0054 0.0113

0.6614 0.2742 0.0172 0.0178 0.0293

newD

 
 


 
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163060

160851

155115

Budget

 
 


 
  

 These examples are demonstration purpose only and do not 
represent the practical scenarios  !!!  

 Need experts’ opinions and operational information to improve 
the pure academic research  !!! 

 



Conclusions 

 Fast in-line imaging tools for high-resolution 
anomaly detection 

 Automatic and near real-time damage 
classification and risk assessment 

 Integrated diagnostics and prognostics for 
decision making and risk mitigation 

 Need help from industry to revise, improve 
and apply this methodology to practice 
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