Comparison of Composite Repair performance on Drilled and Eroded Defects

Michael W. Keller Ph.D. PE, Omar Ramirez
Department of Mechanical Engineering
The University of Tulsa

Main Objective
The goal of this project is to understand the performance of composite repairs when there are applied to through wall defects with significant diffuse wall damage. This project compares the expected performance of repairs with the current design approach in which the flaw is simulated with a drilled hole.

Project Approach/Scope
To test the performance of diffuse defects, dry gas erosion was used to generate a through wall defect inside a straight pipe specimen and elbow specimen. An example of this damage is shown in figure 3. The size of the diameter of the eroded area was, on average, five times larger than the through wall defect as shown in figure 4. Repaired specimens were pressure tested until failure in the test facility shown in figure 5. At the same time, Digital Image Correlation was performed in order to obtain displacements and strains for the repair during testing.

Results
In the case of straight pipes, there was no significant variation in failure pressure from drilled to eroded defects. This indicates that the substrate deformation is not important in the repair performance. Figure 7 shows the failure pressure for elbows where the eroded specimens failed at lower pressures than the drilled specimens. Figure 8 shows an example of the DIC strain measurement on elbow specimens along with an extraction line for the data in figure 9. As expected eroded specimens had higher strain levels. Straight specimens with elongated damage also failed at lower pressures when compared to specimens with circular damage, indicating that damage shape is important for repair performance.

Acknowledgments
This project is funded by DOT/PHMSA’s Competitive Academic Agreement Program. Other assistance for this project provided by: Citadel Technologies and Erosion Corrosion Research Center at The University of Tulsa.

Public Project Page
Please visit the below URL for more information:
http://www.ens.utulsa.edu/acml/