PHMSA - 2016 R&D Forum

Working Group #4

Underground Natural Gas Storage

Overview of Technical and Integrity Issues

Steve Nanney

November 16, 2016
Initial Thoughts on What to Consider

• Design standards
• O&M Standard Practices
 – Monitoring, evaluation tools and standards
• Integrity Management
 – Risk Assessment Tools
• Leak Detection
• Health Effects
Aliso Canyon - Well SS25

- October, 2015, SoCal Gas’ Aliso Canyon Well SS25 developed a natural gas leak
- Well plugged in mid-February 2016
- ~ 5 billion cubic feet of natural gas was released into the atmosphere
- ~ 5,790 households were relocated due to the co-release of natural gas with odorant (mercaptans).
- Cost over $X00-million
- Aliso Canyon Field has 115 wells
Underground Gas Storage

- ~ 400 interstate and intrastate underground natural gas storage facilities currently operate in the U.S.
- ~ 17,000 UGS wells
- ~ 4.7 trillion cubic feet of natural gas working capacity in U.S.

SoCal Gas – Aliso Canyon Field, CA
Underground Gas Storage

• ADB–2016–02
• Safe Operation of Underground Storage Facilities for Natural Gas

• Operators of underground storage facilities should review their O&M and ER activities to ensure the integrity of underground storage facilities are properly maintained

Aliso Canyon, CA Field - leak
• O&M processes and procedures should be reviewed and updated at least annually, unless inspections for integrity warrant shorter review periods.

• O&M processes and procedures should include:
 – data collection and integration,
 – risk assessments,
 – monitoring,
 – operational limits,
 – mitigation measures, and
 – record keeping for any underground storage facility threat that could impact public safety, operating personnel, or the environment due to leakage, failure, or abnormal operating conditions.
Underground Gas Storage

- **After Aliso Canyon Leak – What’s next?**
 - CA has strengthened their well regulations
 - Rulemaking by PHMSA
 - API RP 1170 and 1171
 - Public Workshops were conducted
 - Task Force issued report on Underground Storage
 - Department of Energy
 - Department of Transportation – PHMSA
 - Others
API RP 1171 and/or 1170 standards

• Reservoir design
 – maximum operating pressures and geologic formation and environmental effects
• Well drilling and completion -
 – well control practices
• Operations and Maintenance
• Integrity Management
• Emergency Preparedness and Response
• Training
How are reservoir/well maximum operating pressures established/maintained?

• A must----

• Are they maintained through-out well life
 – injection,
 – withdrawal and
 – stimulation processes?
How are well design and maximum well operating pressures established?

- **Design factors** –
 - How should they be established?
 - What are they? Do you know?
- **Production casing and tubing** –
 - should they have robust design factors and be maintained for well life?
 - last line of defense to protect from a leak or blow-out?
- **Cementing practices** –
 - Height of cement above producing zones
 - Evaluation of integrity
Are well standards established and maintained?

• Establish and maintain:
 – Maximum well operating pressure
 – Design safety factors – are they known?
 – Diameter, weight/wall thickness, Grade, coupling type, packer locations, production perforations, internals, and wellhead rating, etc.

• When maintenance is performed – is data maintained?
Should wells flow through?

• Tubing only,
• Production casing w/no tubing, or
• Through tubing and production casing

• When is it safe to flow through any of these examples?
 – How should be the well casing and/or tubing condition/standards for maintaining safety?
How is well production casing and tubing designed for hoop stresses?

• What is the well design safety factor?
• Is it a set safety factor maintained for the life of the well?
• Should wells have different safety factors for:
 – flow in tubing only?
 – flow in production casing?
 – For integrity management assessments?
 – For populated or high consequence areas?
Safety Valves

• How many wells have safety valves?
 – Surface safety valves
 – Subsurface safety valves
• When are these safety valves needed?
• How often should they be tested?
Mechanical Integrity Test

• How often should a well production casing and tubing mechanical integrity test be conducted?
 – ≤ 5-years, ≤10-years, ≤ 15-years, ≤-20 years, other

• What type tests should be conducted?
 – Noise and temperature logs:
 – Caliper log:
 – HR-MFL log (corrosion)
 – Cement Bond
 – Pressure test – at what pressure range and when?
Safe Operating Pressures?

• How should safe operating pressures be established or evaluated from a caliper log, HR-MFL Log or pressure tests?
 – Using design factors of casing or tubing
 – Remaining wall thickness or Other Methods

• Should safe pressures be established based upon some form of Barlow’s Equation, B31G or R-STRENG, when an accurate corrosion log is used to find corrosion or other casing/tubing defects?

• What should be the pressure and hold time for a pressure test?
Overview of PHMSA July Public Workshop

• **Integrity Management Principles (importance of):**
 – Risk assessments (with valid system information)
 – Design factors – needed based upon casing string type
 – Anomaly evaluation – how should they be evaluated?
 – Documentation

• **Assessment tools:**
 – Numerous ones are available;
 – Need to use them; and in particular, the correct tool for the threat;
 – Currently, there are varying degrees of use.
R&D Efforts/Priorities
CA PUC Perspective

• Subsurface leak prediction and detection
 – Tools/Logs
 – Evaluation and safe pressure
• Efficacy of subsurface safety valves or a replacement device
• Through-tubing casing evaluation
• Health effects of exposure to methane and odorants
Final Thoughts

• **Design standards**
 – Safety factors
 – Single or Dual Barriers
 – Subsurface safety valves

• **O&M evaluation tools and standards**
 – Logging Tools – MFL, Cement Bond, Temperature, etc.
 – Safe pressure, safety factors
 – Remediation Tools

• **Integrity Management**
 – Risk Assessment Tools
 • High versus Low Pressure Wells
 • High Volume versus Low Volume Wells

• **Leak Detection**
 – Surface, Well head and Tubing Strings

• **Health Effects** - exposure to methane and odorants
Thank You