Leak Detection Research
Overview of Current Projects

Government & Industry Pipeline R&D Forum
Working Group No. 2 – Leak Detection/Mitigation

Mark Stephens
m.stephens@cfertech.com
C-FER Technologies
16 November, 2016
Cleveland, OH
Overview

• C-FER research focus
 – External leak detection (ELD) systems
 – Detection of small releases

• Major projects
 – Experimental performance evaluation - liquids
 • In-ground leak detection project
 • Airborne leak detection project
 • On-water leak detection project
 – Framework for performance evaluation – gas & liquids
 • PHMSA Project DTPH5615T00004
In-ground Leak Detection

• **Objective**
 – Experimentally evaluate performance of a range of commercial ELD technologies for continuous in-ground monitoring of buried hydrocarbon liquid pipelines

• **Focus**
 – Distributed sensing systems intended for burial on/near pipe
 • Acoustic, temperature or displacement sensing (fiber optic cables)
 • Hydrocarbon liquid sensing (electrical cables)
 • Hydrocarbon vapour sensing (permeable tubes)

• **Participation**
 – JIP on-going (Enbridge Pipelines, TransCanada Pipelines, Kinder Morgan Canada)
Experimental Design Considerations

• Simulate leaks under real world operating conditions
 – Realistic soil conditions and sensor placement configurations
 – Realistic temperature differentials between oil and soil
 – Realistic release events (pressures, hole sizes and orientations)

• Facilitate unbiased evaluation of ELD technologies
 – Matching conditions for competing technologies
 – Provisions to ensure ‘blind testing’ from vendor perspective

• Ensure safe handling and disposal of hydrocarbons
 – Apparatus to accommodate full range of LVP hydrocarbon liquids
 – Near-term focus on diluted bitumen (dilbit)
External Leak Detection Experimental Research (ELDER) Apparatus

- Retractable Enclosure
- Soil Containment Tank
- High Pressure Product Discharge Vessel
- Pump Skid with Acoustic Enclosure and Base Isolation System
- Catalytic Oxidizer
- Product Filter and Circulation Piping, Discharge Piping, Vessel Pressurization Systems, Control Valves, Pressure Regulators and Flow Meter Not Shown
- Test Pipe with Release Ports
- Spill Containment Berm
- Product Storage Vessel
In-ground Leak Detection

• JIP Status
 – Phase 1 (completed): evaluate and compare system performance (i.e. probability of detection and time to detect) as a function of release parameters and sensor cable position in a single representative soil environment
 – Phase 2 (ongoing): further explore system performance (including systematic evaluation of detection floor) for selected technologies in two distinct soil environments
 – Phase 3: TBD based on level of interest and support

• Other opportunities
 – ELDER apparatus available for work outside JIP
Airborne Leak Detection

• Objective
 – Evaluate performance capabilities of selected commercial ELD technologies for periodic above-ground monitoring of buried hydrocarbon liquid pipelines

• Focus
 – Development of analytical models for key phenomena
 • Hydrocarbon liquid migration through soil
 • Hydrocarbon vapour (VOC) migration through soil
 • Hydrocarbon vapour (VOC) dispersion in atmosphere
 – Evaluation of point sensing systems intended for airborne deployment
 • Atmospheric VOC sensing (light absorption sensing or flame ionization detection)
 • Ground temperature sensing (thermal imaging)

• Participation
 – JIP on-going (Enbridge Pipelines, TransCanada Pipelines, Kinder Morgan Canada)
Release Modeling

- Magnitudes of temperature change and vapour flux at surface
- Dominant species of gases generated by subsurface leaks
- Vapour concentrations above ground surface
Field Trials –
Example VOC Detection Systems

Open Path Lasers
Plume visualization
Point sensors

Variable weather conditions...
Airborne Leak Detection

- JIP Status
 - Phase 1 (completed): develop and exercise models for subsurface liquid & vapour migration, atmospheric vapour dispersion and ground temperature changes resulting from subsurface releases
 - Phase 2 (ongoing): evaluate detection capability of selected atmospheric vapour sensing and ground temperature monitoring systems through field trials involving controlled gas releases from surface and selective ground heating
 - Phase 3: TBD based on level of interest and support
 - Expanded field trials – more technologies deployed on more realistic platforms
 - Generate vapour flux & thermal gradients from actual subsurface liquid releases
On-water Leak Detection

• **Objective**
 – Experimentally evaluate performance of selected commercial ELD technologies for continuous monitoring of hydrocarbon liquid releases into fresh water environments

• **Focus**
 – Point sensing systems intended for deployment on/above water surface
 • Electromagnetic field (EMF) sensing
 • Hydrocarbon florescence sensing
 • Hydrocarbon liquid contact sensing
 – Range of hydrocarbons
 • Light and heavy oils, dilbit, condensate and surrogate fluid

• **Participation**
 – Program under development
Test Apparatus

Configuration for Phase 1 - idealized lab-scale testing
On-water Leak Detection

• Program Status
 – Phase 1 (solicitation pending): evaluate detection capability of selected systems through idealized lab-scale tests involving incremental and continuous releases of a range of hydrocarbon liquids
 – Phase 2: TBD based on level of interest and support
 • More realistic lab-scale testing (e.g. moving water, surface waves, wind and precipitation)
ELD Evaluation Framework

PHMSA Project DTPH5615T00004 - Framework for Verifying and Validating the Performance and Viability of Leak Detection Systems for Liquid and Natural Gas Pipelines

• Objective
 – To provide guidance for identifying and evaluating candidate ELD systems for possible deployment on onshore gas or hazardous liquid transmission pipelines

• Scope
 – Develop technology evaluation framework
 • Technology requirements
 • Technology screening
 • Technology characterization
 • Technology evaluation and selection
 – Demonstrate framework application → ELDER Test
 – Finalize framework

• Status
 – Project ongoing
 • Draft framework complete
 • Framework demonstration test under development