Leak Detection Research and Development

SOUTHWEST RESEARCH INSTITUTE®

Maria Araujo John Edlebeck

Topics

Machine Learning Applied to Leak Detection

Leak Detection Sensor Testing Gas Emissions Monitoring

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

Application of Machine Learning to Leak Detection

SOUTHWEST RESEARCH INSTITUTE®

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

So What Was SwRI's Research Goal?

Develop a leak detection technology that is:

- Platform Agnostic (Aerial, Ground, Stationary)
- Low false alarm rates in a wide range of environmental and operational conditions
- Non-intrusive, minimal to no retrofit to existing infrastructure
- Autonomous
- Real-time capable
- Extensible
- Able to detect any common pipeline fluid or gas without specific pipeline or operator-specific tuning

Smart Leak Detection (SLED) System

- A combination of optical sensor modalities
 - COTS components
 - Visible $(0.4\mu m 0.9\mu m)$
 - Long-wave Infrared $(7.5\mu m 13\mu m)$

Automated Small Leak Detection from Hazardous Liquid Pipelines Using Multi-Platform Remote Sensing

BRAVE

NEW

WORI D MACHINE LEARNING

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Optical Sensing + Machine Learning

- Optical sensing already used in leak detection
- Addition of machine learning techniques for
 - Autonomy
 - High Reliability (low false alarm rates)
 - Machine Learning
 - Powerful techniques such as convolutional neural networks
 - Extensible and robust detection

Convolutional Neural Networks

Are There Hazardous Liquids In These Images?

Hazardous Liquids Detection and Classification by SLED

Crude Oil

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Mineral Oil

Gasoline

Diesel

Are There Hazardous Liquids In These Images?

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Hazardous Liquids Detection and Classification by SLED

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

SLED - Leak Detection Video

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

SLED is Extensible and can be used for...

Different target substances

 Gases – methane, ethylene, nitrogen

Different sensors inputs and combinations

- Optical sensors
- Analog sensors
- Fiber optics
- Acoustic sensors
- Etc.

SLED for Methane

Based on SLED work and results

- We were recently awarded a project by the DOE to develop a similar technology to detect methane leak/emissions at compressor stations and similar-type facilities
- 18 month project started in October 2016

Next Steps for SLED

We want to demonstrate and quantify system performance in a realistic scenario

- Pipelines
- Facilities

Leak Detection Sensor Testing

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

Technology Validation

- Areas of evaluation
 - Evaluation of performance
 - Non-leak alarm discrimination
 - Ease of implementation
 - Robustness
- Methods
 - Laboratory testing
 - Field testing

Sensitivity Tests

Leak Characterization

Large-Scale Testing

Leak Characterization

- Discharged fluid propagation
- Thermal profiles
- Plume migration
- Acoustic fields

Field Testing of Negative-Wave Systems

41 km

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Testing of DTS/DAS Systems - Large-Scale Testing

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Need for Facility Field Testing

- Facility leaks responsible for:
 - 52% of all leaks^[1]
 - 60% of all leaks less than five (5) barrels^[1]
- 76% of facility leaks are less than five (5) barrels^[1]
- Often outside of monitored segments
- Lack of available performance data for aboveground leak detection at facilities
- Possible to accommodate many types of technologies in one test

Gas Emissions Monitoring

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

SwRI Emissions Monitoring

- SwRI has conducted tests on gas monitoring technologies in laboratories, field, and customer sites
- Experience with state-of-the-art instrumentation:
 - OGI
 - CRDS
 - TDLAS

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

SwRI Emissions Technology Areas

- Instrumentation evaluation
- Fugitive emissions testing
- Leak quantification
- Leak modeling

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Methane Detectors Challenge

- Lead testing of novel low-cost sensors for continuous monitoring
- Partnership with the Environmental Defense Fund and collaboration with:
 - Eight gas companies
 - U.S. federal government
 - Three universities
 - Multiple technology companies

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

Questions?

Maria Araujo (210) 522-3730 Maria.Araujo@swri.org John Edlebeck (210) 522-2538 John.Edlebeck@swri.org

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE

References

[1] American Petroleum Institute, 2005, "PPTS Advisory2005-3 – Overview of Incidents Occurring on Facilities Piping and Equipment," http://www.api.org/~/media/Files/Oil-and-Natural- Gas/PPTS/Advisories- Archive/2005_3AdvisoryFacilitiesGenl.pdf?la=en

ADVANCED SCIENCE. APPLIED TECHNOLOGY.