National Perspectives on Key Technical Challenges
Chad Zamarin, President – Pipeline and Midstream

November 2016
Global Natural Gas Reserves

Unconventional gas is abundant globally, but only the U.S. has the technical capability to develop at present.

- **U.S. Natural Gas Resource Base**
 - 3,051 TCF of total recoverable reserves
 - 1,231 TCF recoverable shale
 - 400 TCF of shale economical below $6/MMBtu
 - U.S. reserves increased by 86% in last 3 years
 - Represents 100+ years of current domestic needs

Source: 2014 BP Statistical Review (Global Reserves); Advanced Resources International, US Natural Gas Resources & Productive Capacity, August 2013 (US Resource Base); MIT, The Future of Natural Gas, 2009 (shales economic below $6)
Extensive Shale Resource Base

Shale Gas Plays – Lower 48 States

Source: EIA, March 2010; Advanced Resources Intl (Lower 48 Unconventional Recoverable Reserves), ARI shale estimates updated April 2010
Market Response to Abundant Supply…

Building a world class LNG Platform along the US Gulf Coast…

SPL – 22.5 MTA (3.2 Bcf/d) of liquefaction capacity in Louisiana

CCL – 9 MTA (1.3 Bcf/d) of liquefaction capacity in Texas

Other demand including Mexico exports, pet-chem expansions, power conversions, etc.
Gas Procurement: Sabine Pass Terminal

- SPL contracting direct pipeline transport capacity
 - Creole Trail P/L: 1.5 Bcf/d
 - Natural Gas P/L: 0.5 Bcf/d
 - Transco P/L: 1.2 Bcf/d
 - Kinder Morgan LA P/L: expect over 1 Bcf/d

- SPL contracting pipeline capacity upstream of the facility

- Contracting with producers and marketers for natural gas

[Map showing gas procurement routes and regions such as Shale Plays and Basins, with markers for Permian Wash, Barnett, Haynesville, and Sabine Pass.]
CCL contracted long-term direct and upstream pipeline transport capacity for Trains 1 and 2:
- Tennessee P/L: 0.3 Bcf/d ✓
- KM Tejas P/L: 0.25 Bcf/d ✓
- NGPL P/L: 0.385 Bcf/d ✓
- Transco P/L: 0.4 Bcf/d ✓

Negotiating with producers for term gas supply.
Technical Challenges and Opportunities

Respond to the evolving market…

1. Maintaining and demanding more from legacy assets

2. Developing new infrastructure in increasingly challenging environment

3. Modernizing the regulatory framework
Maintaining and Demanding More from Legacy Assets

Guiding Principles

- A robust safety culture is critical to success
- Will require assessing threats, prioritizing risk, & remediating flaws
- Executing this plan is a long-term commitment
- Includes active two-way stakeholder communication
- Continuous improvement is at the core

Zero pipeline incidents

Action Plan

1. Apply Risk Management beyond High Consequence Areas (HCAs)
2. Raise the Standards for Corrosion Anomaly Management
3. Demonstrate Fitness for Service on Pre-Regulation Pipelines
4. Shorten Pipeline Isolation and Response Time to 1 Hour
5. Improve Integrity Management Communication and Data
6. Implement the Pipelines and Informed Planning Alliance (PIPA) Guidance
7. Evaluate, Refine and Improve Threat Assessment and Mitigation
8. Implement Management Systems across INGAA Members
9. Provide Forums for Stakeholder Engagement and Emergency Officials
Developing New Infrastructure

Navigating the Permitting Process
• Improved environmental impact analysis
• Advanced routing and site selection

Minimizing Environmental Impact
• Enhanced excavation and installation techniques
• Design for methane emissions reductions
• Horsepower unit selection and design
• Increased horsepower efficiency

Public Education and Outreach
• Demonstrating the need and the benefits
• Ensuring safety and environmental responsibility
Modernizing the Regulatory Framework

“Gas Mega Rule” – key focus areas
1. Moderate Consequence Areas (MCA)
2. Improving Integrity Management Practices
3. Repair Criteria and Corrosion Control
4. Records
5. MAOP Verification and Pressure Testing

LNG Regulatory Framework
1. Appropriateness of a Process Safety Management approach
2. Alignment of mechanical integrity standards including ASME
3. Adoption of a risk based approach for system integrity
4. Identifying key differences between pipeline and LNG terminals to ensure appropriate application
5. Advancing management systems and management of change
Key Challenges: Pipeline Integrity Management & Integrity Verification

MAOP Reconfirmation
- Develop practicable ECA process
- Advance and leverage modern ILI technology

Anomaly Detection & Characterization
- Identify and characterize cracks, continuously improve metal loss characterization
- Develop processes for data integration, risk assessment and risk modeling

Pipe Material Properties
- Identify properties needed for integrity mgmt; reduce need for destructive testing
- Develop pipe characterization technology (OD, WT, Gr, LS)

Underground Gas Storage
- Extend risk and integrity assessment methods to underground storage
- Measure effectiveness of safety systems
- Evaluate design and integrity of leak barriers

Methane emissions detection - quantification - reduction
- Develop and prove technologies that eliminate need for blowdowns
- Evaluate effectiveness and advance emissions mitigation technologies
Critical Role of Academia

Experience demonstrates value of academic engagement

- Deep knowledge in key technical areas gained from broad array of industrial applications
- Demonstrated experience in experimental methods and data analyses
- Capacity and experience to conduct many tests or experiments for more complex research
- Development of the next generation of researchers and technical leaders
- “Pipeline” for ongoing evolution and advancement of the pipeline industry