Damage Prevention Through High Accuracy Mapping

Alicia Farag, LocusView
EXCAVATION DAMAGE - ROOT CAUSES

CGA, Natural Gas Analysis 2015

- **2009:**
 - Excavation practices not sufficient: 34%
 - Notification NOT made: 10%
 - Miscellaneous root causes: 40%
 - Locating practices not sufficient: 4%

- **2010:**
 - Excavation practices not sufficient: 31%
 - Notification NOT made: 12%
 - Miscellaneous root causes: 40%
 - Locating practices not sufficient: 4%

- **2011:**
 - Excavation practices not sufficient: 26%
 - Notification NOT made: 47%
 - Miscellaneous root causes: 40%
 - Locating practices not sufficient: 4%

- **2012:**
 - Excavation practices not sufficient: 25%
 - Notification NOT made: 50%
 - Miscellaneous root causes: 50%
 - Locating practices not sufficient: 4%

- **2013:**
 - Excavation practices not sufficient: 30%
 - Notification NOT made: 50%
 - Miscellaneous root causes: 50%
 - Locating practices not sufficient: 4%

- **2014:**
 - Excavation practices not sufficient: 30%
 - Notification NOT made: 50%
 - Miscellaneous root causes: 50%
 - Locating practices not sufficient: 4%

- **2015:**
 - Excavation practices not sufficient: 34%
 - Notification NOT made: 10%
 - Miscellaneous root causes: 40%
 - Locating practices not sufficient: 4%

CGA, Annual Report 2015
LOCATE PRACTICES NOT SUFFICIENT - ROOT CAUSES

• Inaccurate maps
• Unlocatable pipe
• Poor marking techniques
LOCATE PRACTICES NOT SUFFICIENT - SOLUTIONS

• Inaccurate maps – Improved mapping practices during construction and operations
• Unlocatable – Enhanced visualization and locating technologies
• Poor marking techniques – Training and quality oversight

Accurate maps are the basis of damage prevention
IMPROVED MAPPING & LOCATING TECHNOLOGIES

• Accurate maps
 • High accuracy GPS during construction
 • Data collection throughout operations
 • Depth (z-coordinate)

• Visualization and locating technologies
 • GPS + RFID
 • Visualization during first and second party excavation
 • Visualization of accuracy
CHALLENGES

• Practical challenges of GPS in urban areas
• Standardized data collection
• Depth and depth of cover
CHALLENGES

• Ease of use
 • “I want this to work like my fish finder”

• Integration into existing workflows
 • Construction
 • Operations - locating, repairs . . .

• Distribution to other stakeholders
 • Locators, emergency response, contractors

• Cost and scale
R&D NEEDS

• Improved GPS in urban areas
 • Software data processing techniques
 • More accurate and less complex laser range finders

• RFID and related technologies
 • Greater depths
 • Smaller
 • Cheaper
R&D NEEDS

• High accuracy GPS for non-experts
 • Integration into existing workflows – construction, operations, locating
 • Software data analysis for quality feedback
 • Secure and timely distribution to other stakeholders
 • Scalable and lower cost technologies

• Data model standards for GPS as-builting
R&D NEEDS

• Other ideas?