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Background Information
• Research supported by the American 

Petroleum Institute (API) through its 
Subcommittee on Corrosion and Materials

• SCC appears to be related to conditions of:
– Non-PWHT welds particularly those welds 

with very high stress/strain concentration 
– Residual stresses or cold work 

• SCC observed in wide geographical areas 
within U.S.

– West coast, Great Lakes, Gulf Coast
• SCC reported at user facilities (e.g. at 

distribution terminals or storage and 
blending facilities)

• No SCC reported by ethanol producers
• No reported SCC after ethanol is blended 

with gasoline

Example of Tank Bottom Failure
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Program Objectives
• Initial phase was performed to determine the primary factors, within 

the ASTM D 4806 standard constituents, responsible for SCC of 
carbon steel

• Parametric study was conducted to evaluate the effect of water 
content, acetic acid, inhibitor, chloride, methanol, oxygen, 
denaturant and galvanic coupling on corroded steel

• Results showed that SCC can occur within current ASTM 
specifications with oxygen being the most important factor in 
causing SCC

• Recent studies have included the evaluation of additional factors 
including: effect of denaturant additions; effect of corrosion 
potential and ethanol processing source; and characterization of the 
SCC susceptibility of carbon steel in gasoline-ethanol blends 
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Experimental Procedure
• Notched SSRT specimens prepared 

from A-36 plate material
• Testing of actual fuel ethanol samples
• Chemical characterization performed 

on samples
• pHe and water content analyses –

before and after test
• Corrosion potential continuously 

monitored during SSRT
• Electrochemical testing performed on 

selected EtOH samples

Strain rate = 4x10-7 per sec



S O U T H W E S T  R E S E A R C H  I N S T I T U T E®
SAN ANTONIO                   HOUSTON                        WASHINGTON, DC

Latest SSRT Results
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Specimen Observations

Rim of discoloration

Ductile fracture

Machine Notch
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SEM Fractography
Sugar Cane Europe Sample Deaerated Sugar Cane Europe Sample Aerated
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SEM Fractography (cont’d)
Sugar Cane Brazil Aerated Sugar Cane Europe + Water Aerated
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SEM Fractography (cont’d)
E-85 Sample 3 Aerated Butanol Aerated
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SCC vs. Potential
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SCC Potential Range?
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Summary of Recent Findings
SCC not observed in the absence of oxygen

Ethanol processing source seems to have an influence on SCC

E-85 fuel ethanol samples presented evidence of SCC under aerated 
conditions. No failures reported in the field with the use of E-85 and 
more testing is necessary for verification. 

Corrosion potential of virgin EtOH samples that produced SCC were 
in the range of potentials where SCC was previously documented

New proposed work – Parametric study to investigate the following 
parameters: oxygen content; water content; Ethane, 1-1 diethoxy ; and 
butanol blending to inhibit cracking


