Modelling Based Detection of Early Stage Corrosion Degradation of Pipeline Steels

Pratyush Mishra, Denizhan Yavas, Abdullah Alshehri, Pranav Shrotriya, Ashraf F. Bastawros, Kurt R. Hebert

1Department of Chemical and Biological Engineering,
2Department of Aerospace Engineering,
3Department of Mechanical Engineering,
Iowa State University

Main Objective

This project was awarded to Iowa State University to develop experimental protocols to detect early stage degradation associated with stress corrosion cracking (SCC) in pipeline steels in high-pH bicarbonate solution, based on a combined modeling – experimental approach.

Project Approach/Scope

- Develop predictive model for early intergranular corrosion damage (IGC) preceding SCC. Model is based on our experimental findings:
 - Layer of reduced hardness near corroded GBs suggests nonequilibrium vacancies
 - Preferential Si oxidation at GBs can explain vacancy formation.
 - Triangular corrosion product wedges indicate uniform steel dissolution rate \(V_s \) on grain faces, slightly higher GB dissolution rate \(V_{gb} \)

Results to Date

- The vacancy diffusion-based mechanism was implemented in a finite element simulation of intergranular corrosion.
- Experimentally measured GB corrosion rates and wedge angles are quantitatively consistent with the independently determined vacancy diffusivity \(D_v \) in steel of \(\approx 10^{-12} \text{ m}^2/\text{s} \).
- Model predicts formation of sharp wedges during long corrosion exposures leading to low corrosion rates (prediction currently being tested by SEM). Narrow-angle wedges can concentrate external stresses and act as precursors for SCC.
- Inhibition of SCC may be possible by reducing the Si content of steel. Electrochemical impedance spectroscopy is being developed to detect corrosion crevices and cracks.

Acknowledgments

This project is funded by DOT/PHMSA’s Competitive Academic Agreement Program (No. DTPH5614HCAP03 and DTPH5614HCAP01).

References

Public Project Page

Please visit the below URL for much more information:
https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=720