Radio frequency identification (RFID) smart corrosion coupon

Yizhi Hong, Hao Chen, Brian Harding, Ben Zoghi, M. Sam Mannan

1. Mary Kay O’Connor Process Safety Center, Department of Chemical Engineering, Texas A&M University
2. RFID Technology Center, Department of Engineering Technology and Industrial Distribution, Texas A&M University

*Phone: (979) 862-3985, e-mail: mannan@tamu.edu, URL: http://process-safety.tamu.edu

Main Objective

This project was awarded to Mary Kay O’Connor Process Safety Center to develop an economic, universal, non-intrusive, continuous, real-time wireless monitoring system to simplify the corrosion inspection process, improve the accuracy and effectiveness of the resources, and enhance the overall safety performance of pipeline systems.

Project Approach/Scope

- RFID smart corrosion coupon design
- Explore potential applications for areas susceptible to corrosion
- Design laboratory corrosion testing methodology
 - Validation of RFID corrosion coupon
 - Corrosion rate tests
 - Well controlled corrosion process in a corrosion testing chamber

Expected Results or Results To-Date

1. Environmental chamber constructed under ASTM B-117 standard
 - Temperature, humidity, salinity control
 - System graphical user interface
2. Preliminary tests
 - Evaluation of environmental chamber
 - RFID tag signal test
3. Validation of corrosion coupon (expected)
 - RFID coupon design
 - Effectiveness of different RFID corrosion coupons
4. Further modification of RFID coupon (expected)
 - Correlate the corrosion rate of the supporting material with that of pipeline material

Acknowledgments

This project is funded by DOT/PHMSA Competitive Academic Agreement Program.

References

Public Project Page

Please visit the below URL for more information:
https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=505