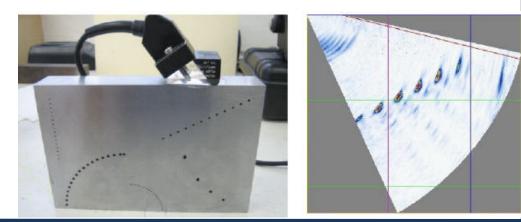


Applied Chemicals & Materials Division

Fatigue Flaw Reference Standard Development for NDE

Dash Weeks

DOT/PHMSA Government/Industry Pipeline R&D Forum – Aug 6-7, 2014


Material Measurement Laboratory

Applied Chemicals & Materials Division

The Problem

- Current inspection technologies use calibration references made with machined artifacts.
- Machined artifacts give excellent signals that are easily interpreted with minimal errors.

Real flaws give poor signals that are difficult to interpret and have large errors

The Solution

plied Chemicals and Materials Division Applied Chemicals & Materials Division Calibrate with representative flaws

Calibration of NDE equipment with signals that are similar to those found in the field....

or LAB

The Solution has Problems

- Representative flaws are available from
 - In-service failures
 - Replacement of in-service components
 - Generating fatigue flaws in the lab

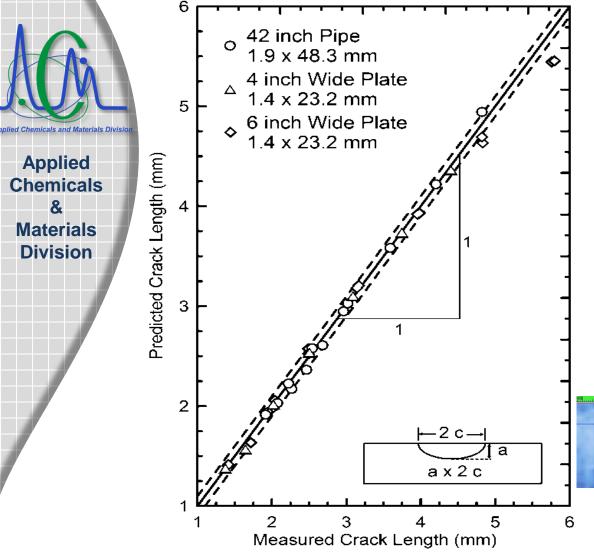
However these are consumable references that are limited in supply, expensive and not useful for in-field verifications

Applied

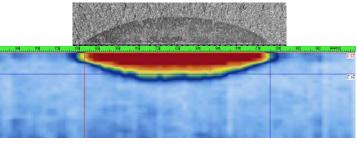
Chemicals & Materials Division

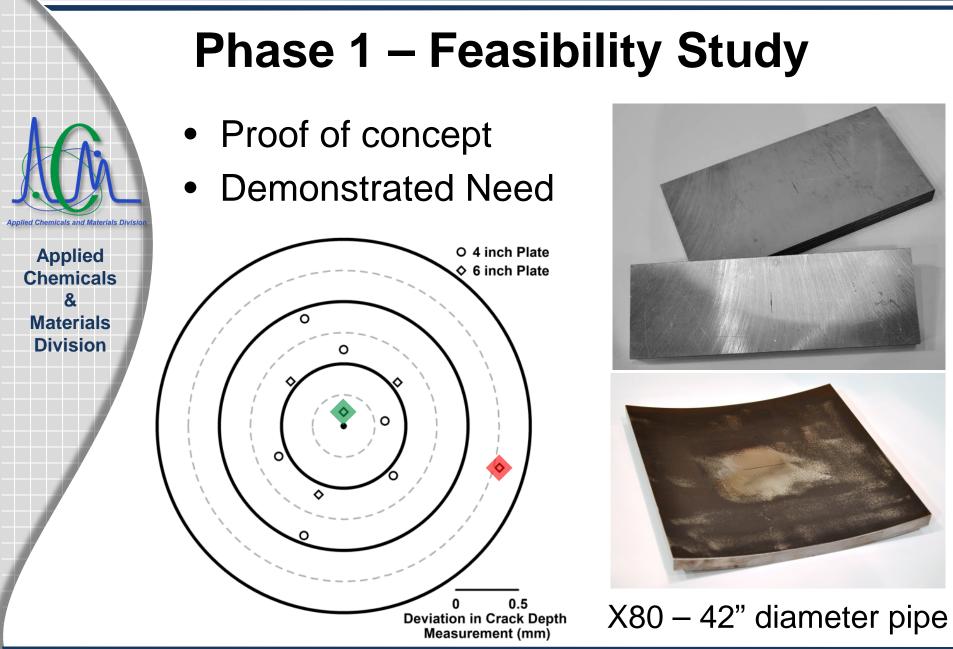
A Better Solution

- Non-Consumable Fatigue Flaw References
- With the same features already accepted in consensus standards and used in the field by the inspection industry



Applied


Chemicals &


Materials Division

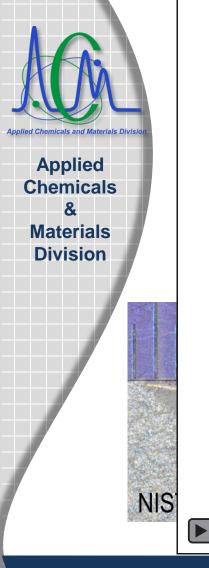

Phase 1 – Feasibility Study

Our goal is to be at least an order of magnitude better at producing reference flaws as the industry is at measuring them.

Phase 2 - Expansion

- Added real time analysis during cracking
- Improved prediction models
- Improved initial notch measurement

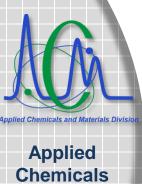
Aimed at improving manufacturing precision and accuracy


- Four Flaw Geometries
- Two Plate Widths
- Prediction Difference < 0.1 mm Actual

Applied Chemicals & Materials

Division

Phase 2 – Improving the Process



рх

Material Measurement Laboratory

Next Steps

Applied Chemicals & Materials Division

Twelve Vendors to evaluate references

- Two plate widths
- Four flaw geometries
 - Three unknown flaws
 - One known flaw

Iterate manufacturing of other prototypes to create references of various shapes and purposes but with the addition of a fatigue flaw.

Applied Chemicals & Materials Division

Need to Know

- Can vendors use the one known flaw geometry to calibrate systems to detect and measure other flaw geometries?
 - What are the errors associated with the range?
 - How do the results compare to "initial" calibration?

2. What effect is there by calibrating to a different known geometry?

Outstanding Need

- Vendors needed to participate
 - Made available at a single location
 - Shipped to vendors
- True blind study participation is only acknowledged with vendor approval and results will not be associated with vendors.
- Different NDE techniques are welcome!

Applied Chemicals & Materials

Division

Thank You!

Applied Chemicals & Materials Division Dash Weeks Pipeline Safety Project Leader NIST – Boulder

timdash@nist.gov 303-497-5302

