Pipeline Research Council International, Inc.

Damage Prevention & Right of Way Monitoring for Operating Pipeline Systems

Confronting the Challenges through Research Programs

PHMSA 2009 R&D Forum Washington, DC June 24, 2009

LEADING PIPELINE RESEARCH

- Damage Prevention Drivers & Challenges
- Successes of Current Research Programs
- Building on the Successes & Addressing the Next Series of Challenges for the R&D Community

PRCI Membership Drives Research

• 38 Energy Pipeline Operating Companies

- 25 Natural Gas Transmission; 11 Liquid
- 2 Operators both Liquid and Natural Gas Transmission

World-wide Research Organization

- 26 U.S. Companies
- 12 Non-U.S. (Brazil, Canada, Europe, Saudi Arabia)

14 Associate Members

- U.S.; Canada; Mexico; Japan
- Total mileage represented ~355,000 miles

PRCI

LEADING PIPELINE RESEARCH WORLDWIDE

Applus RTD Association of Oil Pipe Lines (AOPL) Berg Steel Pipe Corp. Boardwalk Pipelines BP **Buckeye Partners, LP Cameron Compression CenterPoint Energy Gas Transmission Chevron Pipe Line Company Colonial Pipeline Company Colorado Interstate Gas** Columbia Gas Transmission Corp. **ConocoPhillips Pipe Line Company Dominion Transmission Corp. Dresser-Rand Corporation El Paso Natural Gas Enbridge Energy Partners, LP** EPCO, Inc. **Explorer Pipeline Company ExxonMobil Pipeline Company** GE Oil & Gas **Lincoln Electric Company Sumitomo Metal Industries Marathon Pipe Line LLC** National Fuel Gas Supply Corp. NDT Systems & Services Inc. Pacific Gas & Electric Co. **Panhandle Energy Company** Rosen **Shell Pipeline Company LP** Siemens Energy & Automation, Inc. Solar Turbines Inc. Southern California Gas Co. **Southern Natural Gas** Spectra Energy Transmission, LLC T.D. Williamson, Inc. **Tennessee Gas Pipeline Transwestern Pipeline Co. Williams Gas Pipeline**

Alliance Pipeline Ltd. **Enbridge Pipelines Inc.** Evraz Inc. NA TransCanada PipeLines, Ltd. TransGas, Ltd.

Gassco A.S.

National Grid

Total S.A.

GDF Suez

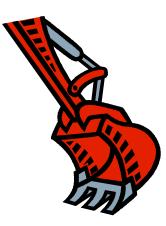
Gas

N.V. Nederlandse Gasunie

Saudi Aramco

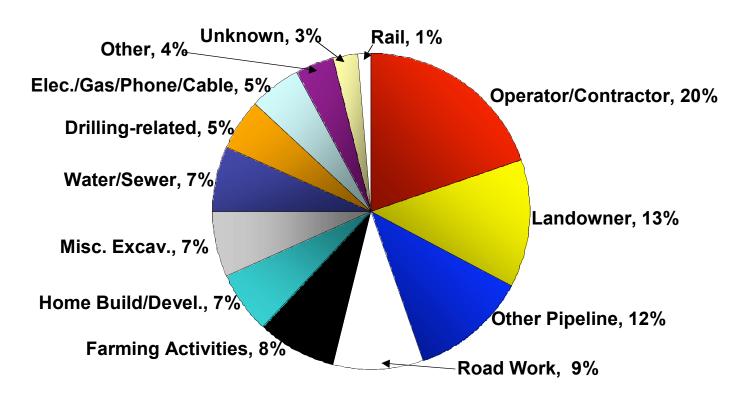
Tubos de Acero de Mexico

Petrobras


Australian Pipeline Industry Association

Nippon Steel

Damage Prevention & ROW Monitoring Drivers & Challenges



www.prci.org

6

Causes of Damage to Pipelines

Excavation damage, 2002-03 (OPS data, from GRI 8747)

Outside force damage is the single greatest cause of pipeline failures

Mechanical Damage is single largest cause of on-shore pipeline damage

>90% of all incidents occur immediately

>70% occur without One Call being made

(source Visitless Integrity Assessment Ltd., 2009)

Impacts of Damage to Pipeline Systems

Safety - Toxic & Heat Injury; staff, contractors, landowners, public

Environmental Performance

- Contamination soil, ground water, and air
- Liability for natural resource impacts and damages
- LAUFE emphasis on greenhouse gas releases

Financial & Economic Considerations

- Keeping product in the pipe and delivery to market revenue impacts
- Paying for environmental liabilities remediation, NRD, 3rd party claims
- Pipeline and facilities repair costs

Public Perception & Corporate Citizenship

- Reputation public and stockholders
- Enhanced awareness
- License to operate

Damage Prevention – Why is This so Challenging?

- Substantial mileage of SYSTEMS transmission and distribution
- Varying needs based on unique conditions for each operator
- No single technology can address all pipeline issues tiered approach, multiple technologies
- Monitoring Frequency and timing
- Resource limitations
- Accuracy and reliability of databases (upkeep)
- Sensitivity of Measurement systems
- Effective communication with multiple stakeholders, and existing databases – DIRT, One Call, etc.
- "If You Build it They Will Come" Increasing Encroachment

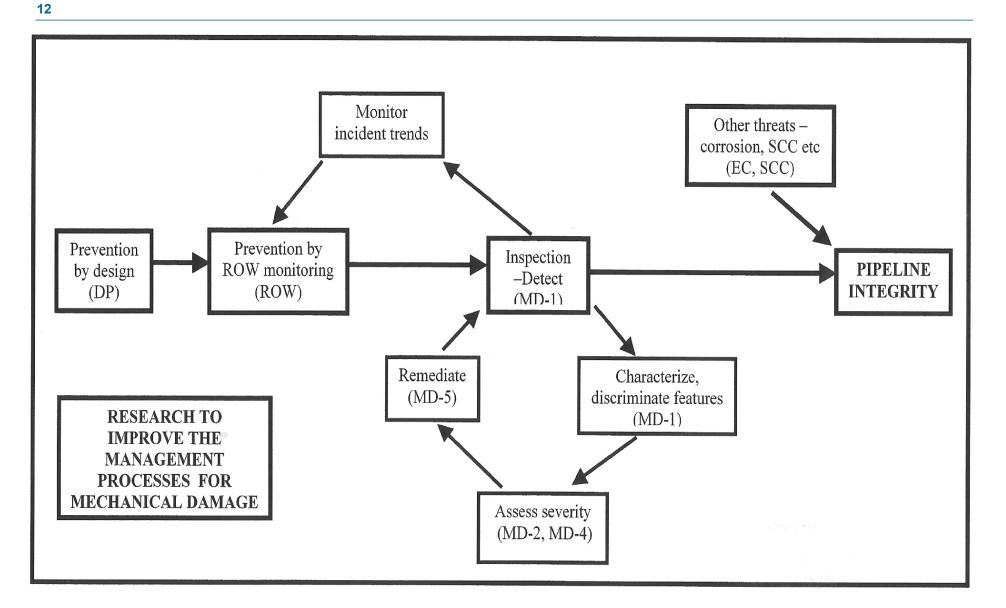
When Prevention Fails – Mechanical Damage Due to Contact

- Coating damage, removal
- Dent (re-rounded), pipe ovalization
- Stress, strain concentration
- Metal removal, ploughing, gouge
- Surface & sub-surface cracking
- Sub-surface deformation
- Time-dependent cracking
- Nearby weld, corrosion
- Leak vs. Rupture; Time-delayed Failure
 - Tracks 2, 3 & 4

When Prevention Fails – Damage From Natural Forces

Monitoring and Detection of Change

- Landslides
- Faults, Earthquakes
- Subsidence & sinkholes
- Erosion
- Flooding



PRCI Roadmap – Damage Prevention

- Developing the means to detect, assess, and prevent the damage to pipelines caused by outside forces such as excavation equipment and ground movement;
- Better understanding of current situation successes and failures – identify 'menu' of good practice for each pipeline location
- Identify gaps and weaknesses in current practice techniques, procedures, human factors – and develop solutions
- Explore opportunities for 'next generation' solutions, incorporating technologies from other industries
- Assessing the human factors influences and impacts in pipeline operations control centers and the development of protocols for normal and abnormal operating conditions

PRCI Research Focus

Right-of-Way Monitoring & Management

- Best practices to prevent mechanical damage to pipelines
- Technologies to accurately and cost-effectively detect and identify unauthorized activity near pipelines
- Measuring the effectiveness of current ROW monitoring techniques/practices
- Development of Pipeline Encroachment Prediction Models
- Analysis and development of acoustic monitoring technology
- Right of Way Automated Monitoring

Damage Prevention Technologies & Human Factors

- Survey of good operator practice (DP1-1)
- Utilization of a ground positioning satellite device in conjunction with a current one-call system (DP 1-4)
- DP-3 Human Factors Analysis of Pipeline Monitoring & Control Operations
- DP 3-2 Influence of Human Factors on Pipeline Damage Prevention
- Acoustic monitoring technology

13

Expected Outcomes – Damage Prevention

- A benchmark of current mechanical damage prevention practices/measures and their effectiveness
- A 'menu' of good damage prevention practices and technologies, taking into account individual pipeline locations, attributes and operational circumstances
- Improved public awareness guidance and behavioral compliance measures for controlling ROW activity
- Identified opportunities for developing and demonstrating <u>'next generation' technologies</u> for ROW monitoring and pipe/facility location – RAM Presentation

Damage Prevention Metrics

0.6 Frequency per1,000.km·y 0.5 0.4 0,3 0.2 0,1 0 0 4 8 5 00 00 00000 00 G -----Year [-] Construction/material -Corrosion External interference Ground movement -Other/unknown -X-Hot-tap by error

(European Gas Industry Data Group 6th report)

Getting better, but room for further improvements

Key Industry Challenges and R&D Needs

- Improve understanding of current system performance and capabilities – POI, POD, POFC; aerial patrol, ground surveillance, satellite, etc.
- Improved integration of industry-government databases; mining existing information and extracting the value – Predictive Modeling
- Developing new technologies that can be integrated into existing platforms
- Application of emerging technologies new constellation of satellites, UASs
- Advanced algorithms and sensors –spatial & spectral resolution
- Standard/guidelines supporting selection of appropriate monitoring method – PFD or decision-tree diagrams
- Real time processing, communication, and reporting
- Continued focus on public awareness and Best Practices

