



**Since 2002** 



Robert Smith R&D Manager, DOT/PHMSA

Government/Industry Pipeline R&D Forum June 24-25, 2009, Crystal City, VA



### **In Memoriam**



Marina Q. Smith September 2007





### **Thank You Everyone!**

- "Our" Efforts are Having an Impact to:
  - Reducing Duplication
  - Leveraging Resources
  - Improving Research Quality
  - Technology Development
  - Strengthening of Consensus Standards
  - Generation and Promotion of General Knowledge





### **A Partnership in Strategy**

#### Pipeline Safety Improvement Act of 2002

- Galvanized DOT/DOE/NIST and DOI coordination on research
- Called for 10 Technical Program Elements
- Increased Pipeline Safety R&D Authorizations

#### Blue Ribbon Panel Meetings

- Held in 2003 & 2004
- Brought together Industry and Government Leaders and crafted much of the program structure and process





### **Pre-Award Summary**

- Government/Industry R&D Forums
  - Held in 2003, 2005, & 2007
- Research Workshops
  - Coatings in 2005 Welding/Joining in 2006
  - Mechanical Damage in 2006
  - Ethanol in 2007
- Gov/Industry Steering Committees
  - Comprehensive and balanced
    - To develop and execute the agenda





### **Pre-Award Summary**

#### Solicitations Issued

- 9 Broad Agency Announcements
- 582 White Papers received and reviewed
- 188 Proposals received and reviewed
- 175 Different research organizations submitting

#### Merit Review Panels

- Federal: DOI/MMS, DOC/NIST, DOE/NETL, USDA & EPA
- State: NAPSR
- Industry: AGA, AOPL/API, APGA, INGAA & NGA





### **Post-Award Summary**

#### Research Awards from:

- BAA: 120 (\$43M DOT + \$61M Industry)
- SBIR: 15 (\$2.1M DOT)
- Interagency: 9 (\$2.4M DOT + \$0.24M NIST/MMS + \$0.88M Industry

Total: 144 (\$47.7M + \$62M Industry= \$109.7M)

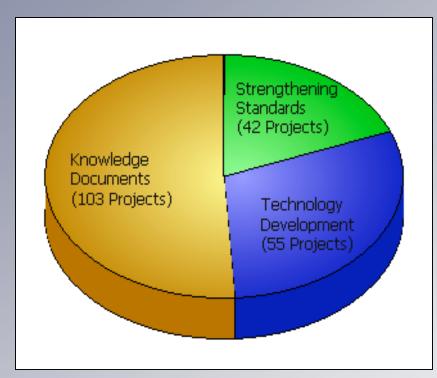
Total does not include 1 Earmark and 2 Unsolicited awards

98% Competitive



### **Post-Award Summary**

**By Project** 


By Funding



Total: 144 (\$47.7M + \$62M Industry= \$109.7M)



#### **Post-Award Relevance**



| Objective               | Projects | PHMSA    | Industry | Total    |
|-------------------------|----------|----------|----------|----------|
| Strengthening Standards |          |          |          | \$29.29M |
| Technology Development  | 55       | \$26.69M | \$29.37M | \$56.06M |
| Knowledge Documents     | 103      | \$25.23M | \$38.35M | \$63.58M |

| Pipeline Types                  |           |          |               |          |
|---------------------------------|-----------|----------|---------------|----------|
| Pipeline Types                  | #Projects | PHMSA \$ | Co-Funding \$ | Total \$ |
| Hazardous Liquid                | 110       | \$29 M   | \$41 M        | \$70 M   |
| Gas Transmission                | 126       | \$44 M   | \$57 M        | \$102 M  |
| Gas Distribution - Steel        | 85        | \$30 M   | \$37 M        | \$67 M   |
| Gas Distribution - Non-Metallic | 23        | \$8 M    | \$7 M         | \$15 M   |

| Pipeline Locations |           |          |               |          |  |  |  |  |  |  |
|--------------------|-----------|----------|---------------|----------|--|--|--|--|--|--|
| Pipeline Locations | #Projects | PHMSA \$ | Co-Funding \$ | Total \$ |  |  |  |  |  |  |
| Onshore            | 136       | \$48 M   | \$61 M        | \$109 M  |  |  |  |  |  |  |
| Offshore           | 45        | \$15 M   | \$21 M        | \$36 M   |  |  |  |  |  |  |
| Alaska             | 42        | \$19 M   | \$25 M        | \$44 M   |  |  |  |  |  |  |

Projects can impact and be relevant in two or more areas. Because of this, counts and sums will amount to more than 100% of program totals.

#### **Post-Award Relevance**

| Program Category                                         | Objectives              | PHMSA    | Industry | Total      | Total |
|----------------------------------------------------------|-------------------------|----------|----------|------------|-------|
|                                                          | Strengthening Standards | \$ 0.07M | \$ 0.08M | \$ 0.15M   |       |
| Damage Prevention                                        | Technology Development  | \$ 1.76M | \$ 1.08M | \$ 2.84M   |       |
|                                                          | Knowledge Documents     | \$ 0.42M | \$ 0.99M | \$ 1.42M   |       |
|                                                          | Strengthening Standards | \$ 5.45M | \$ 7.02M | \$12.48M   |       |
| Pipeline Assessment and Leak Detection                   | Technology Development  | \$21.39M | \$24.20M | \$45.59M   |       |
|                                                          | Knowledge Documents     | \$10.81M | \$15.23M | \$26.05M   |       |
|                                                          | Strengthening Standards | \$ 2.32M | \$ 2.99M | \$ 5.31M 📕 |       |
| Defect Characterization and Mitigation                   | Technology Development  | \$ 0.48M | \$ 0.52M | \$ 1.00M   |       |
|                                                          | Knowledge Documents     | \$ 5.25M | \$ 6.44M | \$11.70M   |       |
|                                                          | Strengthening Standards | \$ 4.57M | \$ 6.33M | \$10.91M   |       |
| Improved Design, Construction and Materials              | Technology Development  | \$ 3.05M | \$ 3.56M | \$ 6.61M   |       |
|                                                          | Knowledge Documents     | \$ 7.33M | \$13.74M | \$21.07M   |       |
|                                                          | Strengthening Standards | \$ 0.00M | \$ 0.00M | \$ 0.00M   |       |
| Enhanced Operation Controls and Human Factors Management | Technology Development  | \$ 0.00M | \$ 0.00M | \$ 0.00M   |       |
|                                                          | Knowledge Documents     | \$ 0.53M | \$ 0.49M | \$ 1.02M   |       |
|                                                          | Strengthening Standards | \$ 0.00M | \$ 0.00M | \$ 0.00M   |       |
| Risk Management and Communications                       | Technology Development  | \$ 0.00M | \$ 0.00M | \$ 0.00M   |       |
|                                                          | Knowledge Documents     | \$ 0.03M | \$ 0.03M | \$ 0.07M   |       |
|                                                          | Strengthening Standards | \$ 0.21M | \$ 0.22M | \$ 0.43M   |       |
| Safety Issues for Emerging Technologies                  | Technology Development  | \$ 0.00M | \$ 0.00M | \$ 0.00M   |       |
|                                                          | Knowledge Documents     | \$ 0.83M | \$ 1.40M | \$ 2.23M   |       |





#### **Post-Award Review**

- Reviews for relevance, quality and performance:
  - Pre-Solicitation: R&D Forums and Workshops
  - Pre-Award: White Papers and Proposals
- Post-Award Reviews
  - Panelists
    - Other Federal Agencies and Standards Developing Organizations (pipeline operators)

|     | Listing of Annual Peer Reviews |                   |          |                      |                   |           |                         |             |  |  |  |
|-----|--------------------------------|-------------------|----------|----------------------|-------------------|-----------|-------------------------|-------------|--|--|--|
| No. | Date                           | Peer<br>Review ID | Complete | Projects<br>Reviewed | Very<br>Effective | Effective | Moderately<br>Effective | Ineffective |  |  |  |
| 1.  | February 7-9, 2006             | PHP-1-2006        | Yes      | 31                   | 29                | 2         | 0                       | 0           |  |  |  |
| 2,  | March 27-29, 2007              | PHP-2-2007        | Yes      | 27                   | 26                | 1         | 0                       | 0           |  |  |  |
| 3,  | May 1, 6, & 14, 2008           | PHP-3-2008        | Yes      | 29                   | 28                | 1         | 0                       | 0           |  |  |  |



### **IMPACT: Technology Development**

| Technology Impact Metric                 | Count | Meter |
|------------------------------------------|-------|-------|
| Technology Projects                      | 55    |       |
| Technology Demonstrations                | 26    |       |
| U.S. Patent Applications                 | 13    |       |
| Commercialized Technologies <sup>A</sup> | 9     |       |

| Category                                    | Technology<br>Projects | Technology<br>Demonstrations | U.S. Patent<br>Applications | Commercialized<br>Technologies <sup>A</sup> | PHMSA<br>(\$M) | Industry<br>(\$M) | Total (\$M) |
|---------------------------------------------|------------------------|------------------------------|-----------------------------|---------------------------------------------|----------------|-------------------|-------------|
| Damage Prevention                           | 5                      | 3                            | 3                           | 1                                           | \$ 1.76M       | \$ 1.08M          | \$ 2.84M    |
| Pipeline Assessment and Leak<br>Detection   | 41                     | 21                           | 10                          | 7                                           | \$21.39M       | \$24.20M          | \$45.59M    |
| Defect Characterization and<br>Mitigation   | 2                      | 1                            |                             | 1                                           | \$ 0.48M       | \$ 0.52M          | \$ 1.00M    |
| Improved Design, Construction and Materials | 7                      | 1                            |                             |                                             | \$ 3.05M       | \$ 3.56M          | \$ 6.61M    |
| Grand Totals:                               | 55                     | 26                           | 13                          | 9                                           | \$26.69M       | \$29.37M          | \$56.06M    |

#### Footnotes:

A. Note: The measurement of "Commercialized Technologies" only occurs on non-active or completed projects.

**Active Technology Projects: 25** 

| No<br>Da | Activities <sup>A</sup> mage Prevention                                                                        | Affected<br>Pipeline<br>Types <sup>B</sup>                 | Application<br>Area <sup>C</sup> | PHMSA    | Co-funding <sup>D</sup> | Total<br>Investment | Technology<br>Demonstrated | Commercialized<br>(in whole/part)?<br>[Show All<br>Projects] | Net Benefit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|----------|-------------------------|---------------------|----------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.       | DTRS56-02-T-<br>0005, "Digital<br>Mapping of Buried<br>Pipelines with a<br>Dual Array<br>System"               | HazLiq<br>GasTrans<br>Dist-<br>Steel<br>Dist-Non-<br>Metal | Onshore                          | \$ 0.46M | \$ 0.53M                | \$ 1.00M            | Yes                        | Yes<br>More (see<br>Fast Facts)                              | Witten's patented technology is the first commercial system capable of producing highly accurate, three-dimensional maps and images efficiently and noninvasively (without digging) in conditions as much as ten feet underground and based on rapid computer analysis of radar images.                                                                                                                                                                                                                                                                                    |
| D/m      |                                                                                                                | age Prevent                                                |                                  | \$ 0.46M | \$ 0.53M                | \$ 1.00M            | 1                          | 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.       | eline Assessment and DTPH56-06-T- 000010, "Internal Corrosion Direct Assessment Detection of Water"            | GasTrans<br>Dist-<br>Steel                                 | Onshore                          | \$ 0.35M | \$ 0.35M                | \$ 0.70M            | Yes                        | Yes<br>More (see<br>Fast Facts)                              | This effort designed, developed and validated a wireless sensor system that can flow inside gas pipelines and detect the presence and location of water. The sensor system is in the form of a 1.5" diameter sphere that can roll along the pipe propelled by gas flow. This technology compliments the ICDA process and will help improve pipeline integrity and reduce the threats of internal corrosion for both piggable and unpiggable lines by enabling operators to determine if a line has any water accumulation and where it the accumulation sites are located. |
| 3.       | DTPH56-06-T- 0000009, "Enhancing Direct Assessment with Remote Inspection through Coatings and Buried Regions" | HazLiq<br>GasTrans                                         | Onshore                          | \$ 0.22M | \$ 0.25M                | \$ 0.47M            | Yes [View File] (0.16MB)   | Yes<br>More (see<br>Fast Facts)                              | A Non-Destructive Testing technology<br>capable of anomaly inspection through<br>most coatings less than 3mm thick.<br>More (see Fast Facts)                                                                                                                                                                                                                                                                                                                                                                                                                               |

|   |              |                                                                                                                                           | Affected                                                   | -                             |          |                         |            |                          | Commercialized (in whole/part)? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------|-------------------------|------------|--------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   |              |                                                                                                                                           | Pipeline                                                   | Application                   |          | _                       | Total      | Technology               | [Show All                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| _ | No.          | Activities <sup>A</sup>                                                                                                                   | Types <sup>B</sup>                                         | Area <sup>C</sup>             | PHMSA    | Co-funding <sup>D</sup> | Investment | Demonstrated             | Projects]                       | Net Benefit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1 | <del>-</del> | ipeline Assessment and Leak Detection                                                                                                     |                                                            |                               |          |                         |            |                          |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|   | 4.           | DTPH56-05-T-<br>0005, "Cathodic<br>Protection<br>Current Mapping<br>In-Line Inspection<br>Technology"                                     | HazLiq<br>GasTrans<br>Dist-<br>Steel                       | Onshore<br>Offshore           | \$ 0.40M | \$ 0.45M                | \$ 0.85M   | Yes                      | Yes<br>More (see<br>Fast Facts) | The Baker Hughes In-line Cathodic Protection Inspection tool is the first method to assess the effectiveness of your cathodic protection system from INSIDE the pipe, bringing operators new benefits. The first PRO-ACTIVE in-line inspection tool – identifies gaps in protection BEFORE damage occurs. More (see Fast Facts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|   | 5.           | DTRS56-05-T- 0002, "Validation and enhancement of long range guided wave ultrasonic testing: A key technology for DA of buried pipelines" | HazLiq<br>GasTrans<br>Dist-<br>Steel                       | Onshore                       | \$ 0.53M | \$ 0.62M                | \$ 1.15M   | Yes [View File] (0.20MB) | Yes<br>More (see<br>Fast Facts) | This project developed and tested in the field enhanced methods of using ultrasonic guided waves, employing a physical focus of the ultrasonic energy to increase sensitivity for detection of corrosion and other defects in pipelines. This method is now implemented in both hardware and software in the Plant Integrity Teletest® Focus™ system. This allows classification of the severity of defects detected from guided wave tests (D'Zurko et al, Pipeline and Gas Journal, June 2008 pp 36-44). Recommendations regarding best practice for operating guided wave test equipment have led to improved training and certification for guided wave test technicians in accordance with the international standard ISO 9712.                                                                                        |  |  |  |
|   | 6.           | DTRS56-04-T-<br>0012, "Hazardous<br>Liquids Airborne<br>Lidar Observation<br>Study (HALOS)"                                               | HazLiq<br>GasTrans<br>Dist-<br>Steel<br>Dist-Non-<br>Metal | Onshore<br>Offshore<br>Alaska | \$ 0.55M | \$ 0.55M                | \$ 1.10M   | Yes                      | Yes<br>More (see<br>Fast Facts) | This research significantly enhanced the capability of the current ITT Airborne Natural Gas Emission Lidar (ANGEL) technology to detect methane leaks in pipelines. Confidence was raised in the ANGEL ability to detect small liquid leaks as well. An integration and demonstration of GIS imagery, Midwave Infra-red cameras and Differential Absorption Lidar (DIAL) has resulted in near real-time DIAL collection and data processing improving from 3-4 weeks to one day. Improvements to speed up the ANGEL route and mission planning software processes resulted in a drastic reduction in cycle time. At the conclusion of this research, Route Generation can now be accomplished in the field and requires only 1 hour of effort to generate 100 miles of pipeline routes. This is a 30X improvement in speed. |  |  |  |

| 1203 |
|------|
|------|

| No. | Activities <sup>A</sup>                                                                                                               | Affected Pipeline Types B                        | Application Area C. | PHMSA    | Co-funding D | Total<br>Investment | Technology<br>Demonstrated | Commercialized<br>(in whole/part)?<br>[Show All<br>Projects] | Net Benefit                                                                                                                                                                                                                                                                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|----------|--------------|---------------------|----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.  | DTRS56-02-T- 0007, "Enhancement of the Long-Range Ultrasonic method for the Detection of Degradation in Buried, Unpiggable Pipelines" | HazLiq<br>GasTrans<br>Dist-<br>Steel             | Onshore<br>Offshore | \$ 0.65M | \$ 0.63M     | \$ 1.28M            | Yes                        | Yes<br>More (see<br>Fast Facts)                              | Improvements were integrated in the TeleTest operating software that facilitates the new sound beam focusing technique. This wave focusing improves the sensitivity and range of inspection and identifies which quadrant of the pipe circumference contains the defect measured in cross sectional area. Hardware improvements were also made to support the multi wave focusing. |
| 8.  | DTRS56-01-X-<br>0023, "Airborne<br>LIDAR Pipeline<br>Inspection<br>System (ALPIS)<br>Mapping Tests"                                   | GasTrans<br>Dist-<br>Steel<br>Dist-Non-<br>Metal | Onshore<br>Alaska   | \$ 2.24M |              | \$ 2.24M            | Yes [View File] (7.27MB)   | Yes<br>More (see<br>Fast Facts)                              | A helicopter based fast, efficient, and accurate tool for detecting and mapping natural gas and hazardous liquid pipeline leaks. This work enabled an engineering research prototype to become a commercialized leak detection and mapping system that the pipeline industry can now use.                                                                                          |
|     |                                                                                                                                       |                                                  |                     |          |              |                     |                            |                                                              |                                                                                                                                                                                                                                                                                                                                                                                    |



| No. | Activities <sup>A</sup> Fect Characterization                                                                 | Affected<br>Pipeline<br>Types B | Application Area C   | PHMSA    | Co-funding D | Total<br>Investment | Technology.<br>Demonstrated | Commercialized<br>(in whole/part)?<br>(Show All<br>Projects] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|---------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|----------|--------------|---------------------|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | DTRS56-03-T-<br>0009, "Advanced<br>Welding Repair<br>and Remediation<br>Methods for In-<br>service Pipelines" | HazLiq<br>GasTrans              | Onshore<br>Alaska    | \$ 0.41M | \$ 0.45M     | \$ 0.86M            | Yes [View File] (2.13MB)    | Yes<br>More (see<br>Fast Facts)                              | The development of an automated system that takes 30 minutes to mount on the pipeline and 36 minutes to make all the fill passes (1.1 hours total) at an estimated cost of \$176.00 per reinforcement sleeve (Type A). If welding was done manually, it could take 2.5 hours total to make the entire fill pass at an estimated cost of \$280.85 per sleeve. The new automated system is approximately 2.3 times faster and 62% cheaper than manual welding. Work continues by Bug-O Systems to reduce the system mounting time in order to further improve cost effectiveness when compared to manual welding. |
|     | Defect Character                                                                                              | ization and                     | Mitigation<br>Total: | \$ 0.41M | \$ 0.45M     | \$ 0.86M            | 1                           | 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gra | nd Totals:                                                                                                    |                                 |                      | \$ 5.84M | \$ 3.85M     | \$ 9.70M            | 9                           | 9                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Footnotes:

- A. Program strategies and the research projects within them.
- B. Short term benefactors are operators or owners of hazardous liquid, natural gas transmission or distribution pipelines. General Public are long-term benefactors.
- C. Area in which research outputs apply within onshore, offshore or Arctic pipelines.
- D. PHMSA co-funds research with many different pipeline stakeholder groups.



#### **IMPACT: Consensus Standards**

| Sea | Standard #                        | Standard Title                                                                  | Projects<br>Affecting<br>Standards | Standards<br>Revised | Out to<br>Committee | Pending<br>(Project<br>Active) | Not<br>Determined | PHMSA    | Industry | Total    |
|-----|-----------------------------------|---------------------------------------------------------------------------------|------------------------------------|----------------------|---------------------|--------------------------------|-------------------|----------|----------|----------|
|     | merican Petroleum Institute (API) |                                                                                 |                                    |                      |                     |                                |                   |          | 10001    |          |
| 1.  | Publ 1163                         | In-line Inspection Systems<br>Qualification Standard                            | 1                                  |                      | 1                   |                                |                   | \$ 0.56M | \$ 0.61M | \$ 1.17M |
| 2.  | RP 1166                           | Excavation Monitoring and<br>Observation                                        | 1                                  |                      | 1                   |                                |                   | \$ 0.07M | \$ 0.08M | \$ 0.15M |
| 3.  | RP 579                            | Fitness-for-Service                                                             | 2                                  |                      |                     | 1                              | 1                 | \$ 0.89M | \$ 1.02M | \$ 1.91M |
| 4.  | Spec 5L                           | Specification for Line Pipe                                                     | 1                                  |                      |                     |                                | 1                 | \$ 0.14M | \$ 0.39M | \$ 0.53M |
| 5.  | Std 1104                          | Welding of Pipelines and Related<br>Facilities                                  | 9                                  | 2                    | 2                   | 1                              | 4                 | \$ 3.87M | \$ 5.73M | \$ 9.61M |
| 6.  | TR 939-D                          | Stress Corrosion Cracking of<br>Carbon Steel in Fuel Grade<br>Ethanol           | 2                                  |                      |                     | 2                              |                   | \$ 0.51M | \$ 0.53M | \$ 1.04M |
| Ame | rican Society of Med              | chanical Engineers (ASME)                                                       |                                    |                      |                     |                                |                   |          |          |          |
| 1.  | B31.12                            | Hydrogen Piping and Pipelines                                                   | 1                                  |                      |                     |                                | 1                 | \$ 0.80M | \$ 0.76M | \$ 1.57M |
| 2.  | B31.3                             | 2004 Process Piping                                                             | 1                                  |                      |                     |                                | 1                 | \$ 0.14M | \$ 0.39M | \$ 0.53M |
| 3.  | B31.4                             | Pipeline Transportation Systems<br>for Liquid Hydrocarbons and<br>Other Liquids | 4                                  |                      |                     |                                | 4                 | \$ 1.63M | \$ 2.91M | \$ 4.55M |
| 4.  | B31.8                             | Gas Transmission and<br>Distribution Piping Systems                             | 6                                  |                      |                     | 2                              | 4                 | \$ 2.82M | \$ 4.89M | \$ 7.71M |
| 5.  | B31.8 BS 7910                     | Gas Transmission and<br>Distribution Piping Systems                             | 1                                  |                      |                     |                                | 1                 | \$ 0.17M | \$ 0.16M | \$ 0.33M |
| 6.  | B31.8S                            | Managing System Integrity of<br>Gas Pipelines                                   | 3                                  |                      | 1                   | 1                              | 1                 | \$ 0.78M | \$ 0.29M | \$ 1.07M |
| 7.  | B31G/RSTRENG                      | Manual: Determining Remaining<br>Strength of Corroded Pipelines                 | 1                                  |                      |                     |                                | 1                 | \$ 0.87M | \$ 0.80M | \$ 1.68M |



|     |                                |                                                                                                                                      | Projects<br>Affecting | Standards | Out to    | Pending<br>(Project | Not        |          |          |          |
|-----|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|---------------------|------------|----------|----------|----------|
| Seq | Standard #                     | Standard Title                                                                                                                       | Standards             | Revised   | Committee | Active)             | Determined | PHMSA    | Industry | Total    |
| Ame | rican Society for Te           | esting and Materials (ASTM)                                                                                                          |                       |           |           |                     |            |          |          |          |
| 1.  | D-4806                         | Specification for Denatured Fuel<br>Ethanol for Blending with<br>Gasolines for Use as Automotive<br>Spark-Ignition Engine Fuel       | 2                     |           |           | 2                   |            | \$ 0.51M | \$ 0.53M | \$ 1.04M |
| 2.  | D2513                          | Standard Specification for<br>Thermoplastic Gas Pressure<br>Pipe, Tubing, and Fittings                                               | 1                     |           |           |                     | 1          | \$ 0.31M | \$ 0.31M | \$ 0.62M |
| 3.  | D2657                          | Standard Practice for Heat<br>Fusion Joining of Polyolefin Pipe<br>and Fittings                                                      | 1                     |           |           |                     | 1          | \$ 0.31M | \$ 0.31M | \$ 0.62M |
| 4.  | E1820                          | Standard Test Method for<br>Measurement of Fracture<br>Toughness                                                                     | 1                     |           |           |                     | 1          | \$ 0.80M | \$ 0.76M | \$ 1.57M |
| 5.  | E1961-98(2003)e1               | Standard Practice for<br>Mechanized Ultrasonic<br>Examination of Girth Welds<br>Using Zonal Discrimination with<br>Focused Search Un | 1                     |           |           |                     | 1          | \$ 0.35M | \$ 0.46M | \$ 0.81M |
| 6.  | E2472-06                       | Standard Test Method for<br>Determination of Resistance to<br>Stable Crack Extension under<br>Low-Constraint Conditions              | 1                     |           |           |                     | 1          | \$ 0.55M |          | \$ 0.55M |
| Ame | American Welding Society (AWS) |                                                                                                                                      |                       |           |           |                     |            |          |          |          |
| 1.  | A5.X                           | Filler Metal Specifications                                                                                                          | 1                     |           |           |                     | 1          | \$ 0.60M | \$ 1.68M | \$ 2.29M |
| 2.  | B4.0                           | Standard Methods for<br>Mechanical Testing of Welds                                                                                  | 1                     |           |           |                     | 1          | \$ 0.60M | \$ 1.68M | \$ 2.29M |
| 3.  | D10.12                         | Guide for Welding Mild Steel<br>Pipe                                                                                                 | 1                     |           |           |                     | 1          | \$ 0.14M | \$ 0.39M | \$ 0.53M |



#### **IMPACT: Consensus Standards**

| Seq | Standard#                | Standard Title                                                                                                                    | Projects<br>Affecting<br>Standards | Standards<br>Revised | Out to | Pending<br>(Project<br>Active) | Not Determined | PHMSA    | Industry | Total    |
|-----|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|--------|--------------------------------|----------------|----------|----------|----------|
| Det | Det Norske Veritas (DNV) |                                                                                                                                   |                                    |                      |        |                                |                |          |          |          |
| 1.  | DNV RP F-101             | Submarine Pipeline Systems,<br>October 2005                                                                                       | 1                                  |                      |        |                                | 1              | \$ 0.17M | \$ 0.16M | \$ 0.33M |
| NAC | E International (NAC     | E)                                                                                                                                |                                    |                      |        |                                |                |          |          |          |
| 1.  | RP 0105-2005             | Liquid-Epoxy Coatings                                                                                                             | 1                                  |                      |        | 1                              |                | \$ 0.14M | \$ 0.39M | \$ 0.53M |
| 2.  | RP 0169                  | Control of External Corrosion on<br>Underground or Submerged<br>Metallic Piping Systems                                           | 1                                  |                      | 1      |                                |                | \$ 0.08M | \$ 0.08M | \$ 0.16M |
| 3.  | RP 0169-2002             | Control of External Corrosion on<br>Underground or Submerged<br>Metallic Piping Systems                                           | 1                                  |                      |        |                                | 1              | \$ 0.45M |          | \$ 0.45M |
| 4.  | RP 0178-2003             | Fabrication Details, Surface<br>Finish Requirements, and Proper<br>Design Considerations for Tanks<br>and Vessels to Be Lined for | 1                                  |                      |        | 1                              |                | \$ 0.14M | \$ 0.39M | \$ 0.53M |
| 5.  | RP 0204-2004             | Stress Corrosion Cracking (SCC)<br>Direct Assessment Methodology                                                                  | 2                                  |                      |        | 2                              |                | \$ 0.63M | \$ 0.97M | \$ 1.61M |
| 6.  | RP 0303-2003             | Field-Applied Heat-Shrinkable<br>Sleeves                                                                                          | 1                                  |                      |        | 1                              |                | \$ 0.14M | \$ 0.39M | \$ 0.53M |
| 7.  | RP 0394-94               | Application, Performance, and<br>Quality Control of Plant-Applied,<br>Fusion-Bonded Epoxy External<br>Pipe Coating                | 1                                  |                      |        | 1                              |                | \$ 0.24M | \$ 0.28M | \$ 0.52M |
| 8.  | RP 0502                  | Pipeline External Corrosion<br>Direct Assessment Methodology                                                                      | 12                                 |                      | 3      | 8                              | 1              | \$ 2.90M | \$ 3.52M | \$ 6.43M |
| 9.  | RP 0694-94               | Commercial Blast Cleaning?                                                                                                        | 1                                  |                      |        |                                | 1              | \$ 0.24M | \$ 0.28M | \$ 0.52M |

#### **IMPACT: Consensus Standards**

|      |                                        |                                                                                                                     | Projects                 |                      |   | Pending  |      |          |          |          |
|------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|---|----------|------|----------|----------|----------|
| Sea  | Standard #                             | Standard Title                                                                                                      | Affecting.<br>Standards. | Standards<br>Revised |   | (Project | Not: | PHMSA    | Industry | Total    |
|      | NACE International (NACE)              |                                                                                                                     |                          |                      |   |          |      |          |          |          |
| 10.  | SP 0206-2006                           | Internal Corrosion Direct<br>Assessment Methodology for<br>Pipelines Carrying Normally Dry<br>Natural Gas (DG-ICDA) | 1                        |                      | 1 |          |      | \$ 0.19M | \$ 0.31M | \$ 0.50M |
| 11.  | SP 0502                                | Pipeline External Corrosion<br>Direct Assessment Methodology                                                        | 1                        |                      |   | 1        |      | \$ 0.14M | \$ 0.29M | \$ 0.43M |
| 12.  | TG 294                                 | Above ground testing for coating condition assessment                                                               | 1                        |                      | 1 |          |      | \$ 0.13M | \$ 0.62M | \$ 0.75M |
| 13.  | TG 305                                 | Wet Gas ICDA Standard                                                                                               | 2                        | 1                    |   | 1        |      | \$ 0.47M | \$ 0.36M | \$ 0.83M |
| 14.  | TG 315                                 | Liquid Petroleum ICDA Standard                                                                                      | 1                        | 1                    |   |          |      | \$ 0.18M | \$ 0.31M | \$ 0.49M |
| Nati | onal Fire Protection .                 | Association (NFPA)                                                                                                  |                          |                      |   |          |      |          |          |          |
| 1.   | 59A                                    | Standard for the Production,<br>Storage, and Handling of<br>Liquefied Natural Gas (LNG)                             | 1                        |                      | 1 |          |      | \$ 0.21M | \$ 0.22M | \$ 0.43M |
| Soci | Society for Protective Coatings (SSPC) |                                                                                                                     |                          |                      |   |          |      |          |          |          |
| 1.   | SSPC-PA1                               | Shop, Field, and Maintenance<br>Painting                                                                            | 1                        |                      |   |          | 1    | \$ 0.14M | \$ 0.39M | \$ 0.53M |



## **IMPACT: General Knowledge**

| Knowledge Promotion Metric       | Count | Meter |
|----------------------------------|-------|-------|
| Final Reports Publicly Available | 55    |       |
| Conference or Journal Papers     | 49    |       |
| Public Events                    | 29    |       |
| U.S. Patent Applications         | 13    |       |
| Annual Peer Reviews Held         | 3     |       |

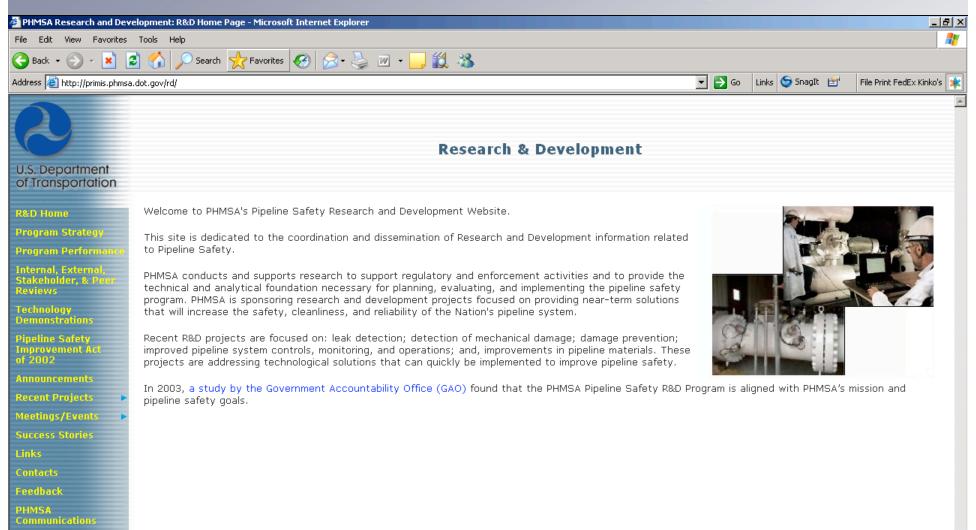
| Event Type                        | Events<br>Held | Stakeholders<br>Reached |
|-----------------------------------|----------------|-------------------------|
| Blue Ribbon Panel                 | 2              | 39                      |
| Gov/Industry R&D Forums           | 3              | 565                     |
| Interagency Coordination Meetings | 13             | 101                     |
| R&D Workshops/Conferences         | 10             | 1445                    |
| Safety Advisory Committees        | 1              | 30                      |
| Grand Totals:                     | 29             | 2180                    |

| Website Usage Metric               | Measure    |  |  |
|------------------------------------|------------|--|--|
| Total Number of Hits               | 11,008,628 |  |  |
| Average Number of Hits/Month       | 150,803    |  |  |
| Files Downloaded (since 1/01/2008) | 327,261    |  |  |





### We've had an Impact!


#### So lets continue:

- Reducing Duplication
- Leveraging Resources
- Improving Research Quality
- Technology Development
- Strengthening of Consensus Standards
- Generation and Promotion of General Knowledge





## http://primis.phmsa.dot.gov/rd/



## Thank You!