the Energy to Lead

OTD Sponsored Research

Pipeline Remediation/Repair

Government/Industry Pipeline R&D Forum Crystal City, VA June 24-25, 2009

Andy Hammerschmidt R&D Manager, GTI

OTD Collaborative— Shooting for High Impact Results

- Separate not-for-profit supporting natural gas infrastructure
 GTI provides administrative support and performs much R&D
- > Demonstration opportunities
- > New product pipeline
- > Analytical tools and reports

OTD Size and Scope

- > 20 members
- Participation cost:
 \$250,000-\$750,000
 per company per year
- > Annual membership dues: Over \$8 million
- > Over 75 projects initiated

Operations Technology Development Pipeline Remediation/Repair Project Focus

•3rd Party Damage – Anomoly Repair

Low Stress Pipe Repair Technique Evaluation

Composite Pipeline Repair – Adhesive Degradation

Aging Infrastructure/Pipeline Rehabilitation

CARP (Cold Adhesive Repair Program)

■PE Patch – Timberline, OSU

RTP Review

Liners (Starline)

Composite Pipeline Repair Systems (CPRS): Analysis of Adhesive Degradation

Situation

- Composite system repairs depend heavily on both the fiber structure and matrix/adhesives used to transfer the load from the defect to the repair system.
- Permanency requires investigating the possibility of repair system degradation over time.
- >Operators need to know if these systems will retain the majority of their shear strength over the predicted lifetime of the system.

Composite Pipeline Repair Systems (CPRS)) **Solution**

- > Adhesives/Matrix used in composite repair systems are a critical component that bonds the repair to the pipe <u>and</u> bonds the individual layers of the repair to one another (laminates of fibers, weaves, mesh, etc.).
- If the bond between the layers of the repair is inadequate, load will not be transferred from the pipe to the repair*.
- > Lap-shear tests have been used in the past to provide an accurate measure of the long term bond strength in composite repair systems. This type of testing can be set-up to mimic the expected stresses between layers that occur in an actual repair.
- > As a result, the *long term performance* of a repair can be assessed using coupon level tests to represent full scale creep rupture performance.

Composite Pipeline Repair Systems (CPRS)

Technique and Results

- > Simple, and compact
- > 30 Samples loaded per frame
- > 6 frames
- > Capable up to 200°F
- Motion capturing cameras provide accurate failure time
- > Weights
 - Low loads- steel shot in bags
 - High loads- A36 2"x4" bar

Technique and Results (Con't)

- > 15 inch arm provides maximum mechanical advantage of 54:1
- Less than 2% load variation through .150 inch travel
- >6 inch center to center
- > Design load of 1800 lbs
- >Load verified before testing conducted

Technique and Results (Con't)

- Composed of 304SS tanks, and CPVC tubing
- >Ph level of 9
 - Mixture of filtered water and sodium bicarbonate
- >Automatic refill system keeps levels consistent
- >Allows isolation of single frames

Technique and Results (Con't)

- >Failures are plotted on Load vs Log time graph
- >100% load established during short term testing
- >Testing currently being conducted at 65°F, 105°F and 140°F

Benefits

- > Funders will receive clear technical information on the performance of composite repair systems, specifically their predicted retention of shear strength as a function of service life.
- > Results will allow operators to properly select systems based on their predicted service life.
- > A temporary repair will be identified as such and repairs considered as permanent will now have testing data showing the shear strength as a function of time.
- > The project results will validate and confirm the long-term integrity of already repaired regions.

Status

- > Short Term and Long Term testing on-going
- > Approximately 5,000 hours of 10,000 hour test completed
- > 8 products in program
 - Citadel Black Diamond
 - Neptune
 - TDW Res-Q
 - PipeWrap A+
 - AquaWrap
 - Armor Plate
 - Walker Technical
 - Carbon Ply Crosslink

Composite Pipeline Repair Systems (CPRS): Low Stress Pipe Repair Technique Evaluation

>The objective is to research, test and assess various repair techniques and provide justification for their use as is allowed by CFR 29 Part 192.

>The results will provide utilities with repair methods that reliable engineering tests and analysis show can permanently restore the serviceability of the pipe.

>This will substantially reduce the cost of repairing using the cutout method and will allow a comparison of repair techniques used on similar types of pipeline damage.

Composite Pipeline Repair Systems (CPRS))

Solution/Test Procedure

- > Two Pipe sizes:
 - 8-inch diam., 0.25 wall thickness (D/t= 32)
 - 16-inch diam., 0.25 inch thick (D/t = 64)
- > Pipe type: Steel X42-X52
- > Applied flaw:
 - Apply 12 inch longitudinal gouges (36% wall thickness)
 - Apply 12 Dent (9-12% pipe diameter)
 - Dents (applied at pressurized pipes at 40% SMYS)
 - Dents & gouge cause pipe failure at 70% SMYS
- > Pressure: Hydrostatic pressure
 - (Short term:100% SMYS)
 - (Long term:1,000-hr tests at 150%SMYS)
- > Compare repair methods to unrepaired specimens (control)

Testing Assembly

CPRS: Analysis of Adhesive Degradation

gti

Composite Pipeline Repair Systems (CPRS)

Benefits

The results will provide utilities with repair methods that reliable engineering tests and analysis show can permanently restore the serviceability of the pipe.

>This will substantially reduce the cost of repairing using the cutout method and will allow a comparison of repair techniques used on similar types of pipeline damage.

Composite Pipeline Repair Systems (CPRS)

Status

- > The testing program was completed during the 1st Quarter of 2009.
- > Data Analysis and generation of the Final Report will be completed during the 2nd Quarter of 2009
- > 8 products in program
 - Citadel Black Diamond
 - TDW Res-Q
 - PipeWrap A+
 - AquaWrap
 - Armor Plate
 - Walker Technical
 - Carbon Ply Crosslink
 - Clockspring

Localized Anomoly Repair – PE Applications

CARP (Cold Adhesive Repair Program)

- > PE patch (HDPE)
- > anomolies, squeeze, etc...

PE Patch – Timberline, Oregon State University

- > full encirclement HDPE
- > chemical (2 part exopy) and heat reaction
- > blowing gas application

Aging Infrastructure/Pipeline Rehabilitation

Reinforced Thermal Plastic (RTP) Product Review

- Example SmartPipe
- Status, Operating Parameters, etc...
- Liners (Starline)

OTD - Pipeline Remediation/Repair Project Focus Next Steps/Gaps/Needs...

- CPRS Testing/Data Fittings, Flanges, Bends, etc...
- Application of CPRS to large diameter HP vessels
 - > above ground and below ground vessels
 - > patch concept
- RTP Research
 - > materials, connections, fittings, joining methods
 - > shortcomings/failure points
 - > testing, evaluation, standards, approvals for use
- Rehabilitation Techniques (Bare Steel, etc...)
 - > new materials both local and large sections
 - > procedures pipe splitting, pipe bursting
 - > processes low cost, environmentally friendly, hard to access