

Technology for Energy Pipelines



# An Overview of PRCI's Research Program

Christina Sames Pipeline Research Council International, Inc. API 2004 Pipeline Conference





# **Today's Briefing**

Overview of PRCI
 2003/2004 Focus
 Project Highlights
 Future Focus





# Pipeline Research Council International, Inc. (PRCI)

# A collaborative technology development organization *Of, By, and For* the energy pipeline industry





### **A PRCI Snapshot**

- Established in 1952 by 15 North American natural gas companies to address longrunning brittle fractures.
- Not-for-profit corporation since 2000
- Current membership:
  - 33 national & international pipeline companies
    300,000 miles of natural gas & hazardous liquid pipelines
  - AOPL
  - GTI





Who We Are







### **How Does it Work?**

- Pipeline member technical experts plan & manage the technical agenda
- One Member/One-Vote on the Board & Technical Committees
- Members Have Free Access to All PRCI Technology
- ➡ More Than \$185MM Contributed Since 1952





### **PRCI Technical Committees**

### Corrosion and Inspection

- Design, Construction, and Operations
- Materials
- ➡ Measurement
- Underground Storage
- Compressor and Pump Station





### **R&D Budgets**

| <u>Program</u> (\$MM) | <u>2003</u> | <u>Co-fund</u> | <u>2004</u> | <u>Co-funds</u> |
|-----------------------|-------------|----------------|-------------|-----------------|
| Design, Const. & Ops. | \$1.6MM     | \$1.0MM        | \$2.0MM     | <b>\$1.5MM</b>  |
| Materials             | 3.0         | 0.6            | 3.0         | 1.8             |
| Corrosion & Inspect   | 3.8         | 0.5            | 3.7         | 3.1             |
| Compressor & Pump     | 1.4         | 1.9            | 1.3         | 0.9             |
| Underground Storage   | 0.6         | 0.7            | 1.0         | 1.5             |
| Measurement           | <u>0.7</u>  | <u>0.3</u>     | <u>1.0</u>  | <u>0.4</u>      |
| Total                 | \$11.1MM    | \$5.0MM        | \$12MM      | \$9.2MM         |

2003 total \$16.1MM 2004 total \$21.2MM





### **PRCI Committees**

#### Corrosion and Inspection

• ILI for mechanical damage, cracks, & geometry, direct assessment, coatings & inspection tools, SCC, MIC

#### Design Construction and Operations

 Implementing new integrity standards, reliability based design, preventing 3<sup>rd</sup> party damage, human factors, abnormal external loads, wrinkles/wripples

#### Materials

• Stronger steels, (X100 and beyond), repair & assessment tools, new welding and inspection processes, processes to lower construction costs





### **PRCI Committees**

#### Compressor and Pump Stations

• Flexibility, Life Extension & Reliability, Engine Efficiency and Environmental Compliance

#### Measurement and Metering

• Reliability and Accuracy, Wet Gas Solutions, Product/Pipe Compatibility and Integrity

#### Underground Storage

- Cavern Safety, Productivity, & Deliverability
- Cavern Expansion





# **Corrosion and Inspection Programs**

#### ➡ 7 Programs, ~ \$11MM in 2003/04

- Locate Mechanical Damage
- Enhance Integrity of Non-piggable Pipelines
- Protect Shielded Pipe and Enhance Environmental Corrosivity Models
- Identify and Prioritize Locations for Internal Corrosion Inspection, Monitoring, and Mitigation
- Optimize Integrity Assessment Intervals
- Improve SCC detection, assessment and management
- Improve CP System Effectiveness





# **Corrosion and Inspection Projects**

#### Locate Mechanical Damage

- Details of Defect Induces in MFL Signals

Total funding: \$2.2M

Model MFL signal responses to determine stress fields and detect mechanical damage

Completion: 2005





### **Corrosion and Inspection Projects**

#### Improve CP System Effectiveness

- Develop Quantitative Relationships Required to Define Mitigation Levels Necessary to Prevent Corrosion
  - Total funding: \$500K

Model distribution paths of AC in confined corridors and suggest mitigation strategies

Completion: 2005





- ➡7 programs and ~ \$6MM in 2003/2004
  - Prevention of 3<sup>rd</sup> party damage
  - Implementing integrity standards
  - Reliability-based design alternatives
  - Determination of maximum safe surface loads
  - Leak detection and notification
  - Prevention of critical pipeline strains
  - Solutions for adverse crossings





### Prevention of 3<sup>rd</sup> party damage

– Detection & Monitoring:

Develop acoustic monitoring for mechanical damage, satellite imagery for unauthorized encroachment and ground movement, and software to detect changes in radar images Total funding: \$1.7M Completion: 2004





# Leak Detection and Notification

- Liquid Release Detection:
  - Parametric based model to lower the leak detection threshold for liquid pipelines
  - Total funding: \$400K
  - Completion 2005





# Prevention of Critical Pipeline Strains

– Pipe – Soil Interaction: \$700K in 2003/2004
 Models and methods for addressing pipe-soil interaction effects in design and mitigation (including frozen soils)
 Completion: 2004





# **Materials Programs**

# ➡4 Programs, ~ \$9MM in 2003/04

- Integrity Assessment and Management of inservice damage
- New Materials and Welding Processes to Lower the Cost of New Pipeline Construction
- Maintenance Welding Techniques
- Advanced Material Design, Safety, and Integrity





### **Materials Projects**

### Integrity Assessment and Management for In-Service Damage

- SCC Crack Extension and Coalescence
  Modeling: Extend the SCC crack growth model
  to project SCC behavior over time under
  generalized loading conditions
- SCC Avoidance in Ethanol Pipelines: Identify the primary factors and range of service conditions likely to cause SCC in ethanol pipelines





### **Materials Projects**

- Integrity Assessment and Management for In-Service Damage
  - Assessment of Remaining Strength of Corroded Pipe

Guidance to assess remaining strength of corroded pipe subject to biaxial & cyclic loading, of corroded higher strength pipe (x80/100), & failure pressure of corrosion defects in low toughness pipe Total funding \$400K Completion 2005





### **Materials Projects**

New Materials and Welding Processes – Improved Welding Methods for Pipelines Multi-wire GMAW procedures for high speed, high deposition fill pass welding Total funding \$500K Completion 2005





### **Contact Details**

# Christina Sames 703/387-0190 X105 csames@PRCI.org

Pipeline Research Council International Inc. <u>www.prci.org</u>