Inspection, Repair and Leak Detection

Technical Track 3

Walter / Marina
El Paso Gas

Government/Industry Pipeline R&D Forum March 24, 2005

Leak Detection

- How significant is the problem?
 - Is this a fugitive emissions issue for natural gas?
 - Are the problems facility oriented vs. ROW?
- Manage the perceptions
 - Include regulators in technologies development process
 - EPA and industry disagree on severity of problem
- R&D should consider differences for
 - Natural gas, liquids and LDCs
 - Pipelines vs. facilities
- Technologies for real-time monitoring and detection of small leaks

Leak Detection

- For Natural Gas Transmission
 - Low priority issue for transmission in rural areas
 - Cost issue rather than technology issue
 - Could be used in conjunction with aerial patrols

For LDCs

- Hand-helds are useful and commercially available
 - → improve resolution/reliability
- Pinpointing leak location
- Definition of leak migration patterns

Leak Detection

- For Liquids Lines
 - Fly over device to detect hydrocarbons
 - Potential gap offshore at connectors
 - Device vs. analytical techniques
 - API/AOPL study indicates smaller leaks most often occur in facilities

Sensor Technology

- Understanding Performance Characteristics and Limitations
 - Need to develop clear understanding of sensor capabilities with respect to different materials, sensor package, pipe geometry/cleanliness
 - What are nominal expectations for each of the technologies, and across all vendors
 - How can more precise measurements from subsequent inspections and in-ditch verifications be used to "close the loop" on performance of tools?

Sensor Technology

- Unpiggable Lines
 - Robotic platforms
 - Improved power generation
 - Improved communications with robots
 - Lighter sensors and sensors with reduced power requirements
 - Integrated platform/sensor package development
 - Clear definition of performance expectations
 - Guidelines/necessity to clean pipes prior to inspection
 - ■What tools are available for cleaning unpiggable lines?

Sensor Technology

- Detection of Cracks/SCC
 - In-ditch methods for finding and sizing SCC
- Cased Pipes
- Small Diameter Lines
 - Are inspection pigs needed?
 - What minimum size should be investigated?
- New Technologies are Needed
 - For unpiggable lines; e.g., pig on a stick
 - For patched pipe
 - For non-metallic materials
- Apply existing technologies from exploration and production sector
- Maximize data acquisition

Mechanical Damage

- What are immediate needs?
 - Screening and ranking tools for decisionmaking
 - Guidance to make life predictions and prioritize maintenance operations
 - Tools to locate and quantify all parameters needed for assessment models
 - Severity assessment
 - Guidance on acceptable levels of damage
 - Methods to locate and repair damage in difficult to inspect areas

Mechanical Damage

- Need to develop acceptable definitions for
 - Cracks
 - No guidance exists for definition of cracks significant vs. microcracks
 - Can quantitative models of damage assist development of definitions?
 - Ripples/wrinkles
- Inspection tools need to consider variations in steel grade and non-metallic materials

When to Repair

- Primary need is to transfer technologies to practices and implement in standards to influence regulatory activities as quickly as possible
 - Technologies to address accurate corrosion rate determination to quickly address intervals
 - Post ILI calibration technologies to address intervals
- What is the technology needed to support repair decisions?
- How do you mine existing datasets to learn from and provide practical guidance?

How to Repair

- Composite Repair Systems
 - Guidance is needed to assist industry in the selection of proper repair systems for a given set of conditions
 - Can a tracking database be developed that summarizes current techniques?
 - Is a state of industry report needed?
- What are drivers for repair selections?
 - Cost
 - Disruption of service
 - Safety

- Leak Detection
 - Assessment of significance of problem
 - Manage perceptions
 - New technologies for real-time monitoring and detection of small leaks
 - For LDCs, develop hand-helds and methods for pinpointing location and migration patterns
 - For liquids, develop fly-over devices, and assess needs for new technologies vs. analytical model developments
 - Technologies for use in offshore operations

- Sensor Technology
 - Develop improved understanding of performance characteristics
 - For unpiggables,
 - Improved power and communications and/or lighter sensors
 - Integration of platform and sensor package design
 - Guidelines for cleaning
 - In-ditch methods for SCC characterization
 - Methods for inspecting cased pipes
 - Assess needs for new technologies
 - Inspection of non-metallics
 - Considerations for small diameter pipelines
 - Methods/techniques to maximize data acquisition

- Mechanical Damage
 - Develop tools for screening and ranking
 - Develop methods of inspection and assessment for quantitative life predictions
 - Identify methods to locate and repair damage in difficult to inspect areas
 - Develop proper definitions for cracks and other damages
 - Design tools to inspect pipes of various steel grades and non-metallics

- When to Repair
 - Need to transfer technologies to industry to influence standards and regulatory activities
 - Identify technologies needed to support repair decisions
 - Investigate how to mine existing datasets with goal of providing improved industry guidance

- How to Repair
 - Guidance on proper selection of composite and other repair techniques
 - Tracking database
 - State of industry report
 - Consider drivers for selection of repair technologies