FIELD TESTING OF REMOTE SENSOR LEAK DETECTION SYSTEMS

Pipeline R&D Forum 2005

J. Christopher Buckingham Southwest Research Institute®

PRESENTATION OUTLINE

- Objective of Testing Program
- Test Facility and Plan
- Experimental Results
- Lessons Learned
- Technology Gaps

TESTING PROGRAM OBJECTIVE

- Conduct field testing of remote sensor leak detection systems
 - Systems developed with funding provided by DOE or OPS
 - *"Demonstration" project, not an evaluation by DOE*

EQUIPMENT PROVIDERS

En'Urga
ITT Industries
LaSen
Lawrence Livermore Laboratories (LLNL)
Physical Sciences Inc. (PSI)

SYSTEMS TESTED

FACILIT^{RCM} MID FIACILIT^{RCM} MARKER-BASED PIPEL

/	Leak Site	Gas Source	Leak Type	Distance from Leak Site to Center of Road (ft)	Side of Road	R. 78 W.
\prec	1	RMOTC gas	Below ground	36	East	
	2A	Cylinder	Below ground	76	West	35 36 2 1
	2B	Cylinder	Below ground	78	West	
м8 []][.	2C	Cylinder	Below ground	122	East	
~~	3	RMOTC gas	Aboveground	44	East	
	4	RMOTC gas	Below ground	90	East	
	2D/1F	Cylinder	Below ground	100	East	l Facility)
	5	RMOTC gas	Below ground	59	East	11 12
	P1	RMOTC gas	Side-drilled	78	West	
	P2	RMOTC gas	Side-drilled	240	West	
	6	RMOTC gas	Below ground	170	West	
	2E	Cylinder	Below ground	74	East	
	P3	RMOTC gas	Side-drilled	116	West	
	P4	RMOTC gas	Side-drilled	66	West	
	P5	Cylinder	Side-drilled	39	West	
	16	2C-15	14 16	EAK	SITES	

TEST PLAN

Leak Rates (scfh)

R.

	Leak Site	Gas Source	Leak Type	9/13/04	9/14/04	9/15/04	9/16/04	9/17/04 [≶]	ΙΙΙ
Scale:	1	RMOTC gas	Below ground	5,000	1,000	500	100	15 & 5,000	35
	2A	Cylinder	Below ground	0	0	0	0	15	
	2B	Cylinder	Below ground	15	0	0	0	0	
	2C	Cylinder	Below ground	0	0	15	0	0	
	3	RMOTC gas	Aboveground	1,000	2,000	100	2,000	500	
	4	RMOTC gas	Below ground	100	500	2,000	1,000	2,000	
4	2D	Cylinder	Below ground	0	15	0	0	0	-2-11
	1F	Cylinder	Below ground	0	0	15	0	15	
	5	RMOTC gas	Below ground	2,500	5,000	5,000	0	5,000	
	P1	RMOTC gas	Side-drilled	1,000	1,000	1,000	1,000	1,000	
	P2	P2 RMOTC gas Sid		100	100	100	100	100	
	6 RMOTC gas Be		Below ground	500	100	1,000	500	1,000	
	2E	Cylinder Below groun		0	0	0	15	0	
9 16	P3	RMOTC gas	Side-drilled	10	10	10	10	10 7	11
	P4 RMOTC gas		Side-drilled	500	500	500	500	500	-
	P5 Cylinder Sid		Side-drilled	1	1	1	1	1	
	16	2C	14	16	2C—			14	

RESULTS – LEAKS FOUND

Summary of Leaks Detected by Each Equipment Provider

l eak Rate	Number of Actual Leaks Detected/Presented							
Loun nuco	En'Urga	ITT	LaSen	LLNL	PSI	Total		
5,000	1/3	3/3	5/5	N/A	4/4	13/15		
2,500	0/2	0/0	0/0	N/A	2/2	2/4		
2,000	0/3	3/4	5/7	N/A	6/6	14/20		
1,000	0/8	3/7	11/13	0/1	13/14	27/43		
500	0/9	3/7	10/12	0/1	14/14	27/43		
100	0/10	1/6	0/10	0/1	4/12	5/39		
15	1/6	0/6	0/11	N/A	1/10	2/33		
10	0/5	0/4	0/7	0/1	2/8	2/25		
1	0/5	0/4	0/7	0/1	0/8	0/25		
Totals	2/51	13/41	31/72	0/5	45/78	92/247		

RESULTS – LEAKS FOUND

Instrumentation Sensitivity to Leak Rates – Bar Chart

RESULTS – LEAKS FOUND

Instrumentation Sensitivity to Leak Rates – Percent Found

RESULTS – FALSE POSITIVES

"False Positive" Leaks Reported by Equipment Providers

Test Day		En'Urg	ya 🔰	ITT		LaSe	en	LLNL		PSI	PSI	
		Reported	False									
Mon	am	2	2	—	—	_	_	—	Ι	6	1	
	pm	2	2	—	_	_		—	_	5	0	
Tue	am	3	3	—					Ι	7	1	
	pm	2	1	20	17	4	1		_	6	0	
Wed	am	3	2	—		9	3	4	4	7	0	
	pm		_	32	29	9	3	_		9	2	
Thu	am		_	—		6	2	_		8	2	
	pm			26	22	5	0	_		8	0	
Fri	am			—		6	1	—		_	—	
	pm		_	14	11	6	1		_		_	
Totals		12	10	92	79	45	11	4	4	56	6	

LESSONS LEARNED

- Develop separate data collection areas for transmission- and distribution-based systems
- Add more leaks
- Industry advisors
- Potential future test (August 2006)

ACKNOWLEDGMENTS

Funding from DOE NETL and DOT OPS Technical Support from RMOTC Personnel

Report at <u>www.rmotc.com</u> (last report under "Library" tab)

TECHNOLOGY GAPS

- "Demonstration" vs. "Development"
 testing
- Detection of leaks below 500 scfh
- Detection of minor leaks (0.02 scfh)
- False positives
- Accuracy/Cost tradeoff

GAPS – DOE PERSPECTIVE

- Remote sensing is on the verge of becoming a commercial commodity
- Advantages are range and extent of search
- Wrapping up funding of low-altitude remote sensing
- High altitude remote sensing is current focus

GAPS – INDUSTRY PERSPECTIVE

Development satellite-based systems

- High-resolution
- Multi-band
- Able to follow narrow corridors
- Satellite systems offer savings and centralized databases

Need research to develop high resolution sensors operating in increasingly challenging platforms

GAPS – INDUSTRY PERSPECTIVE

- Gap is in the process of developing, accepting, and improving tools
- The challenge is to choose technologies that are close to becoming viable
- Priority funding should be given to funding these technologies
- Regulations language needs to embrace these technologies
- Technology improvements can then be funded