PRCI Compressor Station R&D

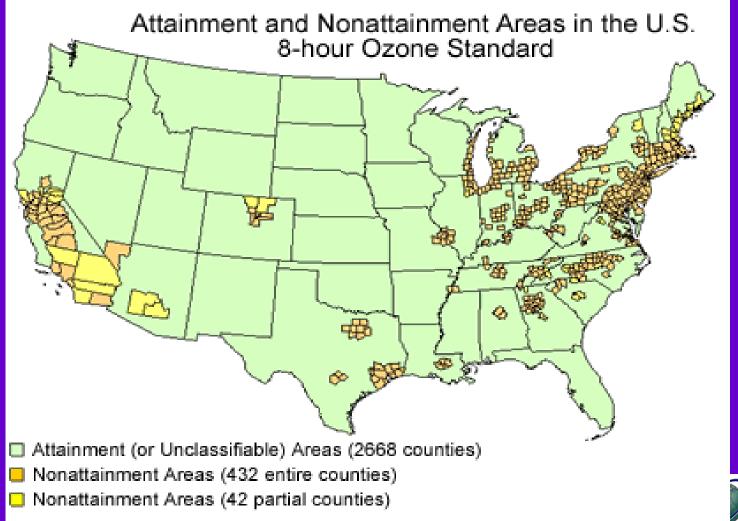
DOT R&D Forum March, 2005 Houston, TX

Bill Couch – El Paso Pipeline Group

PRCI Focus

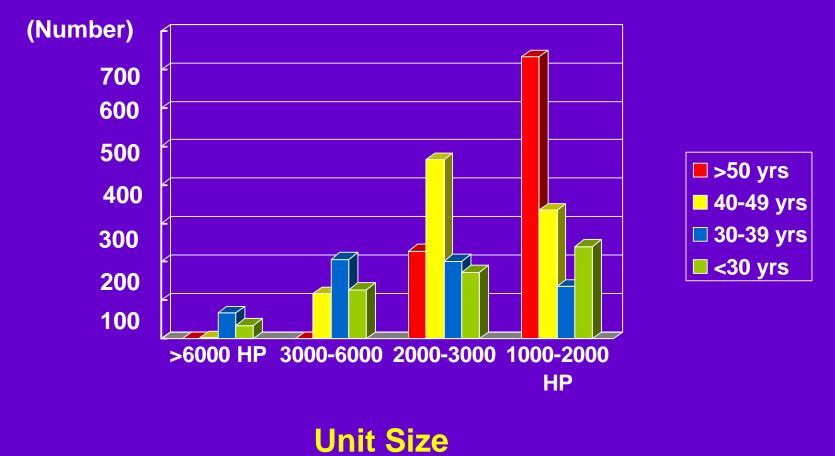
- Minimize the operating costs and capital requirements of compression and pump service while meeting market demands and all applicable environmental regulations."
- PRCI scope is on driver-side, not compressor-side
- PRCI has two active programs
 - 1) "Avoid mandated CapEx" (NOx reduction)
 - 2) "Reduce O&M costs"

Program 1 – Avoid Mandated CapEx

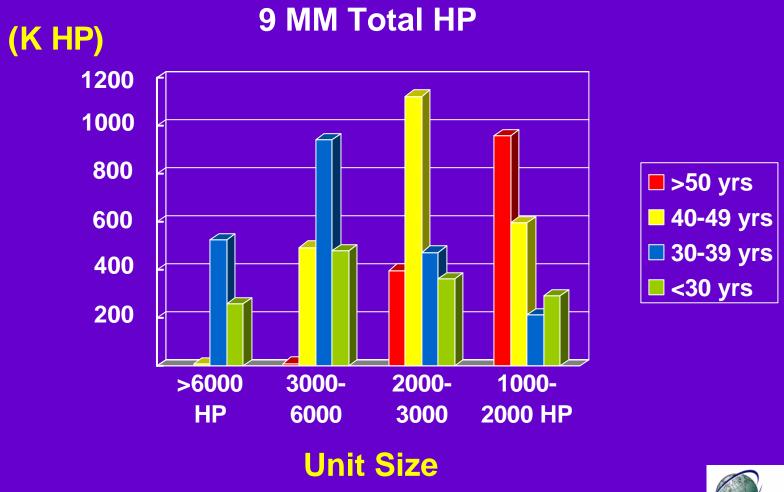

- Develop cost-effective reciprocating engine NOx retrofit options for expected 2010 NOx rules
 - Avoid major replacements of older units with electric drives or new engines
 - Total replacement cost ~\$13.5 Billion (9 MM HP)
 - Preserve capital for pipeline growth investments

Target 0.5 g NOx/bhp-hr at 1/6 cost of new unit

- No compromise on any other emissions, unit performance, reliability or fuel efficiency
- Applicable to 80% of existing units
- Multi-faceted challenge, many projects underway



NOx Reprise: New Hot Spots Just Named


Age of Reciprocating Engine Fleet

. . . .

Age of Reciprocating Engine Fleet

NOx Reduction – Reciprocating Engines

Six Technical Dimensions for NOx control

- Ignition
- In-cylinder air/fuel mixing (fuel injection)
- Air management
- Air supply
- Engine Controls
- Exhaust aftertreatment

Marginal returns from each dimension vary, and are not completely independent of the others

Requires component integration & testing at scale

NOx Reduction – Reciprocating Engines

Ignition

- Laser-ignition system development at Colorado State U.
- Micro-pilot ignition field testing ongoing (DOE cofunded)
- Reduction of prechamber-generated NOx (future)

In-cylinder air/fuel mixing (fuel injection)

Refinement of high-pressure fuel injection nozzles (completed)

Air management

- Port flow design to enhance scavenging of Worthington engines
- Port flow coefficients for Clark, Cooper & Worthington engines

Air supply

- Turbocharger performance monitoring system
- Standardized turbocharger testing guidelines (completed)
- Turbocharger embedded flow sensor (completed)

NOx Reduction – Reciprocating Engines

Exhaust after-treatment

- Assessment of non-thermal plasma exhaust treatment
- Oxidation catalyst performance guidelines (completed)
- Evaluate SOA performance of SCR

Engine controls

- Determine precise air/fuel ratio using automotive-based technology (ion sensing)
 - Potential closed-loop controller
- Advanced two-cycle controls algorithms (completed)

Component integration via Lab and field work

- Clark TLA-6 installation at CSU engine testbed (DOE cofunded)
- Investigate impact of gas composition on pipeline engines

Program 1 – Avoid Mandated CapEx

Gas Turbines - Validate DLN performance
Test DLN units at very low ambient temperatures
Solar-Mars 100S (TransCanada)
Solar-Centaur (Williams)
Proposed NSPS for gas turbines ~ 15 ppm
Gas Turbine emissions monitoring
Gas turbine PEMS development
Alternative to expensive CEMS

Program 2 – Reduce O&M Costs

Gas Turbine blade life characterization

- Rolls-Royce RB211-24G
 - Avoid needless blade replacement

Improve overall recip engine performance

- Reduce fuel use, maintenance cost, and emissions
- SwRI project Compressor Station Infrastructure Enhancement (DOE cofund)
 - Improve unit performance by capturing nontraditional engine parameters as control inputs

Improve liquid pump efficiency

 Expand the efficiency "sweet spot" of centrifugal pumps

Summary of 2005 PRCI Program

	2005 Budget	Cofunding
Avoid Mandated CapEx	\$ 838 K	\$ 460 K
Reduce O&M Costs	\$ 150 K	\$ 175 K
Total	\$ 988 K	\$ 635 K

