Technical Track Session on Direct Assessment: Report-Out

> R&D Forum Houston Texas March 22 – 24, 2005

Session Objectives

Identify Technical Gaps & Challenges from **Stakeholder Presentations** Identify Additional Gaps & Challenges Understand the Role of On-Going R&D in Addressing Gaps & Challenges Which are not Completely Addressed? Evaluate Priorities for Addressing **Remaining Gaps & Challenges** Roadmap Top 5 Gaps & Challenges

Process Employed

- Advance survey on DA gaps and challenges by AGA
- Review of plenary session gaps & challenges
- Initial presentations on ongoing R&D
- Open discussion of gaps & challenges
- Group review of consolidated list to identify relevant gaps
- Group ranking of selected gaps (see criteria)
- Limited roadmapping of top 4

Plenary Session Speakers: DA Gaps & Challenges

- Randy Zobell Extending Life of Existing Pipeline
- Peter Terranova Pipe Integrity, ECDA Reliability

 Bill Scott – Improving Ratio of Digs to Pipe Repairs, Improve Knowledge of Impact of Soil Conditions on SCC
 Mary Jane McCartney – Acceptance by Regulator

Model for Ranking Gaps and Challenges

- High-High if group viewed as exceptionally important
- High if gap is
 - Critical to effectiveness of early application reliably identify serious defects
 - Addresses key gap in applicability of process
 - Critical to validation, including clarification of limitations

Medium if gap is

- Important to refinement of process (<u>e.g.</u>, improved efficiency of application)
- OR High priority BUT programs are ongoing and deliverables are not complete

Summary Statistics

Ranking (1)	Number of
	Gaps
High-High	4
High	6
Medium	8

(1) All Gaps are "Above Average"

"Roadmapping" Questions for Each Priority Gap or Challenge

- What are the R&D objectives?
- What are the potential benefits? To whom?
- What are barriers to implementation?
 What are viable go-forward approaches?

Gap 1 – Addressing Conditions Where ECDA Application is Challenging

- Cased crossings
- Presence of stray currents
- Deeply buried pipe
- Bare pipe
- Uncased crossings
- AC Corrosion
- Multiple Pipes in ROW
- Station Piping
- Shielding Coatings
- Shielding Soils
- Shrink Sleeves/Shielding Coating Joints

Gap 1 – Roadmapping (1)

R&D Objective

 To identify, develop and demonstrate tools and techniques to fill the gaps and expand the applicability of ECDA

Potential Benefits

- Improve Safety
 - Ability to determine integrity of pipelines that cannot be assessed by other means
 - Addressing segments that are more difficult to characterize
- Improve Cost Efficiency and Reliability
- Remove obstacles to broad application by creating options

Gap 1 – Roadmapping (2)

Barriers

- In some cases, technologies are not currently available; in others, validation is not complete
- Inability for current technologies to provide quantitative assessment
- Difficulty of access
- Environment or System Interference

Candidate Go-Forward Approaches

- Survey existing technologies for applicability and short term potential
- Expand and demonstrate capability and reliability of existing technologies
- Create new knowledge and technology to address the specific problem
- Capture application in standard and/or recommended practice (if necessary)

Gap 2 Validation of ICDA – All Three Applications

Dry Gas
Wet Gas
Liquid Product

Gap 2 Roadmapping (1)

R&D Objective

- To characterize the accuracy and range of applicability of ICDA methods
- To characterize which models apply to what situations

Potential Benefits

- Improve Safety
 - Improve confidence through better understanding of uncertainties and results
 - Allow operators to gain experience and to improve implementation

Gap 2 Roadmapping (2)

Barriers

- Multiple and intermittent historical process conditions
- Incomplete and inaccurate pre-assessment data
- Willingness and ability of companies to participate in validation
- Sporadic and minimal existence of internal corrosion in dry systems
- Candidate Go-Forward Approaches
 - Survey existing technologies and methodologies and applicability
 - Develop protocols
 - Demonstrate ICDA methods (especially wet gas and liquids)
 - Perform validation
 - Develop standards

Gap 3 Characterizing the Impact of **Uncertainties in ICDA Application** Elevation profiles Data limitations Addressing key questions • Where do we dig? Length of excavation Potential solution area • Probabilistic Methods

Gap 3 Roadmapping (1)

R&D Objective

- To identify and develop practical approaches
 - to characterize the impact of uncertainties in ICDA application
 - to reduce uncertainties in ICDA application
 - to pinpoint locations and optimize length of excavation
 - Potential Benefits
- Improve safety
 - Improve accuracy and cost efficiency of ICDA
 - Create an awareness of uncertainties and potential options to address them

Gap 3 Roadmapping (2)

Barriers

- Need for information and technologies to provide accurate depth measurement of deep pipes
- Willingness and ability of companies to participate in validation
- Candidate Go-Forward Approaches
 - Survey existing technologies and methodologies and applicability
 - Develop protocols
 - Demonstrate ICDA methods (especially wet gas and liquids)
 - Incorporate into existing standards

Gap 4 Addressing Conditions Under Which SCCDA is Challenging

- Locating near-neutral SCC
- Station piping & crossovers
- Difficulty predicting occurrence of various SCC with known causal factors
- Candidate Solution Areas
 - Tools or equipment that would improve effectiveness (<u>e.g.</u>, tools to locate Shielding coating)

Gap 4 Roadmapping (1)

R&D Objective

- To identify, develop and demonstrate tools and techniques to fill the gaps, expand the applicability and improve the ability to detect SCC
- Potential Benefits
 - Improve Safety
 - Ability to determine integrity of pipelines that cannot be assessed by other means
 - Addressing segments that are more difficult to characterize
 - Improve Cost Efficiency and Reliability
 - Remove obstacles to broad application by creating options

Gap 4 Roadmapping (2)

- Barriers
 - In some cases, technologies are not currently available; in others, validation is not complete
 - Inability for current technologies to provide quantitative assessment
 - Lack of comprehensive data on SCC incidence
 - Lack of mechanistic understanding of SCC
- Candidate Go-Forward Approaches
 - Survey existing technologies for applicability and short term potential
 - Expand and demonstrate capability and reliability of existing technologies
 - Create new knowledge and technology to address the specific problem
 - Capture application in standard and/or recommended practice (if necessary)