PRCI

LEADING PIPELINE RESEARCH

DOT R&D Forum

HOUSTON, TEXAS • MARCH 2005

Direct Assessment Forum

PRCI DA History and R&D needs

Harvey Haines

Pipeline Research Council International, Inc. • www.prci.org

Statistics from 2002 Survey

Gas Transmision - 92,975mi 6 PRCI Transmission members

- 49% of Transmission Pipelines Piggable
- 87% piggable in 7-10 years

Gas Trans/Dist - 8700mi 2 PRCI Distribution members

- 16% of Trans/Dist Systems Piggable
- 32% piggable in 7-10 years

Liquid Pipelines - 33,479mi 3 PRCI Liquid Members

- 92% of Liquid Transmission Piggable
- 93% piggable in 7-10 years

DA is needed most in Distribution Systems

but is needed by all types of pipelines

ECDA Historical Reports

GRI-02/0141, Development of ECDA Methodology

- Bubenik & Mooney, Battelle
- Established need for two complementary tools during indirect surveys
- Supported NACE RP 0502 development

GRI-00/0231, Direct Assessment and Validation

- Battelle, CC Tech, & Paragon
- Established ECDA as an alternative integrity technique

2004/2005 Reports

REPORT #	TITLE	CONTRACTOR
GRI-04/0093.1	Comparisons of DA & Other Integrity-Assessment Methods	Kiefner
GRI-04/0093.2	Structural Reliability Assessment for ECDA	Advantica
GRI-04/0093.3	ICDA of Gas Transmission and Storage Lines	SwRI/CCTech
GRI-04/0093.4	ECDA Validation Summary Report	Battelle
GRI-04/0093.5	NoPig Metal-Loss Detection System For Non-Piggable Pipelines	NP Inspection
GRI-04/0093.6	Practical Guidelines for Conducting an ECDA Program	Corrpro
GRI-04/0093.7	Circumferential Guided Waves for Defect Detection in Coated Pipe	Penn State
Pending	A Soils Model for ECDA	Battelle/Marr

ECDA Participating Companies

10 Datasets from 9 Companies

- CenterPoint Energy
- El Paso
- Enbridge Consumers Gas
- Gulf South
- Panhandle
- SoCal
- Duke Energy Gas Transmission
- Union Gas
- Williams

ECDA Needs — Selection Matrix

Previous project selected sites from a variety of situations

- Rural to Urban
- Single and Multiple Pipelines
- 1940 to very recent
- 10, 16, 24, & 30 inch lines
- Variety of Coatings
 - Most lines Coal Tar or Asphalt
 - Field Applied Tape encountered in Surveys

Need situations in

- Station Piping and Crossovers
- Bare Pipe and tape coating
- CDA

ECDA Needs — Survey Tools

Almost always ran at least 3 tools

- PCM CIS DCVG
- Sometimes ran as many as 6 7 surveys
 - Current Attenuation (PCM or C-Scan)
 - CIS (fast cycle & slow cycle)
 - DCVG (several methods including DA meter)
 - ACVG (PCM A-frame)
 - Delta Survey (EUPEC RMS)
 - Soil Resistivity (4 pin Wiener & Geonics)
- Need new tools
 - Cased Crossings
 - Shielded Coatings and Soils

Soils Model and ECDA Regions

Indirect Inspection Tool/Segment	CIS + [)CVG	Electro T	magnetic ools		CIS + DCVG	
		PIPELINE					
<u>Physical</u> <u>Characteristics</u> and History	Sandy, well drained soil, with low resistivity, no prior problems	Sand to lo drained, v resistivity, proble	am, well vith low no prior ms	Sandy, drained so low resisti prior prol	well oil, with vity, no olems	Loam, poor drainage, with medium resistivity some prior problems	Loam, poor drainage high resistivity, prior problems
ECDA Region	ECDA1	ECDA2	ECDA3	ECDA4	ECDA1	ECDA5	ECDA6

FIGURE 4: Illustration of ECDA Region Definitions

- Regions are defined using soil characteristics, history, and inspection tools
 - Good published ECDA soil model not yet available

Soil Characterization for ECDA

- Marr has already been modeling EC in non-piggable lines
- Correlation of EC data with extensive soil data sets will allow evaluation for ECDA application without a large investment
- Includes soil characterization, topographical, and drainage surveys
- Draft Report planned for end of March

ECDA & SRA (Structural Reliability Assessment)

- Technique Developed by Advantica (British Gas)
- Uses Failure Frequencies from Experience (Database) of UK Transmission
- Update Failure Frequencies from ECDA Results
 - Using Bayesian Updating
- Result are:
 - Failure Frequency per mile
 - Reinspection Interval
 - Based on Probability theory
- Allows Quantitative Comparison Between DA & ILI

ECDA & SRA (continued)

Validating SRA by Appling to 5 of the 10 datasets

- Results comparable to ECDA analysis but quantitative probabilities output
- Also Funding Improvements to the SRA Methodology
 - Will Deliver Methodology in Report Form

ICDA Needs

Wet Gas ICDA

- Need Standard Development
- Need Validation

Liquid ICDA

- Need Standard Development
- Need Validation

Dry Gas ICDA

- Need More Validation
- More understanding in uncertainties due to:
 - Depth measurement uncertainty
 - Modeling uncertainty
 - Flow history uncertainty

Tools R&D

- Long Range Guided Wave UT
- Above Ground Electromagnetic Metal Loss
 - NoPig system
- Modeling circumferential guided waves
- Fluidized Sensors

Long Range UT study at SwRI

- Magnetostrictive Transducer Approach
 - Effort increasing power of transmitter
 - Field trials ongoing to be finished by May 2005
- Need to complete field trials
- Only way to inspect cased crossings
 - without using ILI or hydrotesting
- Cofunded by DOT, NGA and others

Overview of the NoPig System

A system to measure Above Ground Magnetic Field Deflections

Old & New Filters in ERW Pipe

Preliminary Results NoPig Field Tests

Original system designed for seamless pipe

- ERW pipes produce distortions which require special filters
- Offset in long seam prevented data analysis near girth weld
- Developed two different filtering algorithms for long seam welds
 - New filter shows location of significant metal loss
 - Filters out offsets near girth welds
 - New filter shows clock position of long seam
 - Also improves results in seamless pipe

Significant limitations still exist

- Must be less than 1.5 meter depth
- Above ground interference sometimes a problem
 - Cars
 - Metal objects buried in the right-of-way
- Some need for larger pipe diameters
 - 26 36 inches
- Need to handle tees, elbows, xcrossings
 - Crossovers
 - station piping

SCC DA "in-the-ditch" detection/sizing

- Penn State Modeling study to locate and size SCC and examine attenuation from coating
 - Applicable "in-the-ditch" and for ILI
- Current guided wave ILI tools have not been reliable at discriminating SCC from inclusions
- 3D model allows study of mode conversion should provide more information
- Final report looked at coating studies
 - Lack of funding prevented completion of mode conversion studies

Fluidized sensor study at SwRI

- Goal to look at tiny microbots to look for corrosive fluids inside a pipeline
- Result due in 2006
- Cofunded by DOE and others

MEIS (Magnetic Electrochemical Impedance Spectroscopy)

Shielded Coating Techniques

- PRCI studied detection of shielded coatings in 1990's
- Technology used was MEIS
- NGA, SoCal, and others also studied MEIS
 - Application for detecting active corrosion

 R&D helped establish DA as a viable technique for integrity management

Put DA on equal footing with ILI & hydrotesting

Future Projects needed to fill in gaps for applying DA

- Special situations
 - Station pipeing
 - Crossovers
 - Cased crossings
- Problematic coatings & soils
 - Shielding
 - Bare Pipe