Mechanical Damage Technical Workshop

Houston, 28 Feb to 1 March 2006

Detection and Characterization Panel

Technology Research – Issues and Opportunities

David Batte Consultant to PRCI

Pipeline Research Council International, Inc. • www.prci.org

Mechanical damage due to direct contact

Damage features:

- Coating damage, removal
- Dent (re-rounded), pipe ovalization
- Stress, strain concentrations
- Local wall thinning
- Metal removal, plowing, gouge
- Highly deformed surface layer
- Surface, sub-surface cracking
- Time/cycle-dependent cracking
- Nearby weld, corrosion

Background

Mechanical damage is not a new issue!

- 80 PRCI projects completed, over 40 years
- Substantial API, EPRG, APIA activities
- DOT co-funded projects
- JIPs, individual company research

PRCI/GRI expenditure has been around \$5 million/year in past years

Key background information

- GRI guidelines for locating and using pipeline industry research (Yellow Pages). Vol 9 – Mechanical damage (1999)
- Effect of smooth and rock dents on liquid petroleum pipelines. API 1156 (1997 & 1999)
- EPRG methods for assessing the tolerance and resistance of pipelines to external damage. (Roovers, Zarea et al, 1999)
- Proposed new guidelines for ASME B31.8 on assessment of dents and mechanical damage. GRI 01/0084 and IPC 2002 (Rosenfield, 2001/02)
- Bottom-side dent study. Baker Report OPS TTO10, November 2004

Technology research – issues and opportunities

Current technology status

- Detection and characterisation
- Assessment and remediation
- Technology gaps
- Defining the way forward
 - MD Workshop, January 2005
 - Roadmapping
- Current PRCI project portfolio
- Issues still to be addressed

Damage detection & characterization - status

High resolution caliper ILI

High resolution calipers can find dents below 1% depth – how reliable and accurate are they?

Current MFL, UT technology

- Caliper + simultaneous or sequential MFL
- Axial, transverse field
- Elastic wave, EMAT

MFL finds small dents, associated metal loss – can this become quantitative?.

Can UT find cracks at damage?

Emerging ILI technologies

• Dual-field MFL, NLH

Mapping stress, strain distributions, finding cracks. How long before we have proven tools?

Damage assessment - status

Full-scale pipe burst and fatigue testing

- Started in 1950's
- Battelle, Stress Engineering (AGA/GRI/PRCI)
- British Gas, Gaz de France (EPRG)
- API, DOT/OPS
- Individual operators, Joint Industry Groups

....over 400 test results But many tests are simplistic in representing damage and cannot be used for new model development

Damage severity modeling - status

Empirical and semi-empirical models:

- Dents, gouges and dents + gouges
 - Battelle fracture models
 - Battelle 'Q' factor, British Gas 'Dent + Gouge Fracture model'

OK for some types of damage (plain dents, gouges), but very large scatter for others (dents + gouges)

- Dents on welds, corrosion
 - Fatigue life of dents with welds (Fowler & Alexander, 1994)
 - Guidance for assessing dents on welds (Kiefner, 1999)

Dents on welds are not as good as plain dents, but better than dents + gouges.

Finite element modeling

Good for deformation, strain & stress distributions during denting & re-rounding, but not for crack formation

Fracture mechanics models of time-dependent failure

- Battelle and Advantica models
- Fleet Dent Assessment model Still considerable scatter; models often lack supporting data

Guidance for damage assessment - status

- ASME B31.8 (US)
- API 1156 (US)
- EPRG (Europe)
- Pipeline Defect Assessment Manual (Europe)
- CSA Z662 (Canada)
- AS 2885 (Australia)

Assessment rules - status

	Plain dents		Dents at	Dents with	Dents with
	Constrained	Unconstrained	Weids	gouges	corrosion
ASME B31.8	Up to 6% OD or 6% strain		Up to 2% OD or 4% max strain for ductile welds. No safe limit for brittle welds	No safe limit	Up to 6% OD for dent and metal loss, as per corrosion criterion
API 1156	No limit provided rock remains in place	Up to 6% OD. >2% requires a fatigue assessment	Up to 2% OD	Not allowed	Not considered
EPRG	Up to 7% at a hoop stress of 72% SMYS		Not allowed	Not allowed	Not allowed
PDAM	Up to 7% of pipe diameter		Not allowed	Assess as dent and defect combination	
Z662	Up to 6 mm for <102 mm OD Up to 6% for >102 mm OD		Not allowed	Not allowed	Not allowed

Depth alone is insufficient – need to move to dent profile + strain and stress distributions, cracking, other features

Remaining gaps (Leis & Hopkins, 2004)

Detection, sizing

- Existing commercial ILI will detect damage, but accuracy and reliability are not quantified
- Next generation ILI (dual field MFL, NLH) has potential for improvement

Assessing severity

- Many full-scale tests are simplistic in representing damage
- Fundamental knowledge of the underlying failure processes is limited; models for some types of damage (eg dents + gouges) are prone to very high scatter
- Use of a fracture-mechanics-based algorithm will fill this gap
- Whatever approach is used, the results will require broader validation; existing full-scale data-sets lack the information needed for this purpose
- Much has been done on plain dents; main focus in future should be on dents + gouges, dents + other damage

Mechanical Damage Workshop, January 2005

Focus on issues, needs and priorities for PRCI's work on all aspects of mechanical damage:

- Damage prevention
- Detection, sizing and characterization
- Severity assessment and repair
- Damage management strategies
- Attended by PRCI members (operators and vendors), DOT invitees

Prioritized needs – inspection/characterization

- Create database of dent/gouge features
- ILI technology to discriminate between plain dents and dents with other features.
- Tools to integrate geometry and metal-loss information
- ILI technology to better characterize and size critical damage features
- Quantify the resolution, accuracy and reliability of ILI and in-ditch inspection methods

Prioritized needs – severity assessment

- A validated method for ranking the severity of dents with/without associated corrosion, welds
- A validated method for assessing the safety margin on burst pressure for dents+gouges
- A validated method for assessing the remaining life of gouges, dents+gouges

Mechanical Damage - Roadmap

Five-year horizon

Overall aims

 To develop tools and methods enabling a reduction in the frequency and consequences of in-service damage due to mechanical damage, dents and gouges

Concept

- Three-level assessment approach, compatible with ILI tool output
 - Screening and ranking
 - RSTRENG analogue
 - Bespoke models, case by case

Mechanical damage – Roadmap

Торіс	2005 2006 2007 2008 2009
Detection & characterization	
Evaluate current ILI capabilities	
Dual field MFL trials	
3-D discrimination of defects	
NLH ILI development	
Assessment of structural significance	
Develop ranking/screening models	
Develop mechanics-based models	
Validation using full-scale tests	
Remediation	
Safe inspection, repair procedures	
Damage management methodology	
Assessment algorithms, procedures	
Guidance documentation, software	

Damage inspection – new projects

MD-1 Tools to detect and discriminate mechanical damage

- Development of dual-field magnetic flux leakage inspection technology (\$400k from PRCI, \$1350k total, 2 years, submitted to PHMSA for co-funding)
 - evaluate ability of prototype vehicle to discriminate between critical and benign anomalies in an operating pipeline
- Fundamentals and performance characteristics of current ILI technologies (\$300 from PRCI, \$600k total, 2 years, submitted to PHMSA for co-funding)
 - define abilities of current ILI tools to detect, discriminate and quantify damage features
- Understanding MFL signals from damage (\$120k, 1year)
 - Quantitative separation of stress and deformation contributions

Damage assessment – new projects

MD-2 Ranking and screening mechanical damage defects (\$150k,1yr)

- Inventory of types of damage found in service, likelihood and severity etc, for correlation with severity assessment ranking
- Model for predicting the likelihood and severity of damage. First-level discrimination, eg puncture v non-penetrating, crack formation.

• MD-4 Structural significance of mechanical damage (\$800k, 2yrs)

- Improved models for predicting the burst and delayed failure of dent + gouge damage
- Full-scale validation of new models for dents, dents+welds/ corrosion and dents+gouges under monotonic and cyclic load (2nd year)
- MD-5 Guidelines for inspection and repair of dent + gouge damage (\$250k, 2yrs)
 - Safe inspection and excavation procedures; redefinition of pressure reductions and safety margins, based on new models
 - Safe grinding repair procedures for dents, gouges, dent + gouges

Detection and Characterization - outcomes

- A quantitative understanding of the types, extent and distributions of mechanical damage experienced by pipelines
- ILI technology capable of identifying and measuring the features that discriminate between critical and benign anomalies in an operating pipeline
- A model for ranking the severity of damage (rupture, leak, nonpenetrating dent+/-gouge+/-cracks) based on damage features, pipeline attributes and aggressor characteristics
- Validated state-of-the-art models for determining the burst and delayed failure behavior of damaged pipe
- New recommendations for determining safe pressure reductions and working practices during repair
- An Industry Guidance Document, based on these deliverables, to aid decisions on the characterization, severity assessment, and safe excavation and repair of damaged pipe

Summary - Key issues

Detection

• How accurately and reliably can we find damage?

Characterization

• Can well can we identify and measure the significant features?

Assessment

- How severely do the significant features influence pressure containment, now and during ongoing operation?
- Can we create an analogue of RSTRENG for screening/Level 1?

Repair

- How safe is it to continue operating?
- How safe is it to excavate?
- What in-the-ditch tools do we have to measure/confirm damage severity?
- What repair method is appropriate?

Summary - future research needs

Better tools

- ILI
- In-the-ditch

Better models

- Screening and ranking
- Burst, time-dependent failure
- Environmental influence

Better information exchange

- Feedback from field defect types, populations, ILI vs excavation
- Integration of inspection and assessment measuring and assessing the significant features

Better regulations

• Based on damage profile and features, not depth

Summary - the opportunity to deliver

PRCI's roadmap is becoming well-developed

- Based on extensive consultation
- Coherent inter-relationships between projects
- Clear opportunities to deliver measurable improvements
- Substantial benefits
- Intermediate milestones will deliver value

Delivery will take time, effort and money

- Projected spend \$3 million each year for five years
- High priority; PRCI members have allocated \$1.8 million for inspection/assessment in 2006
- Substantial in-kind contributions from operators, vendors
- PRCI is making every effort to secure other co-funding

Thank you for listening

