Internal Corrosion Monitoring in Pipelines by using Helical Ultrasonic Waves

Stylianos Livadiotis, Arvin Ebrahimkhanlou, Salvatore Salamone
Smart Structures Research Group (SSRG), Department of Civil, Architectural and Environmental Engineering
University of Texas at Austin

Main Objective

This project was awarded to Professor Salvatore Salamone in order to design, implement and validate a nondestructive evaluation (NDE) technology for detecting, evaluating and monitoring the progression of internal corrosion in pipelines. It is proposed to use a novel class of sensing system, helical guided ultrasonic waves (HGUW) and advanced data processing techniques for supporting corrosion diagnosis and decision-making.

Methodology

- Permanently attached network of (PZT) sensors
- Active (HGUW) and passive (AE) health monitoring
- Localization of various types of defects in steel pipes
- Finite element modeling
- Experimental validation and correlation with numerical models

Results

- Corrosion-like damage was simulated externally on the surface of the pipe in order to verify the effectiveness of the proposed methodology.
- An accelerated corrosion test was carried out inside the pipe. Work is now underway and targets on quantifying the corrosion progress.

Acknowledgments

This project is funded by DOT/PHMSA's Competitive Academic Agreement Program (#693JK31850004CAAP).

References

Public Project Page

Please visit the below URL for much more information:
https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=782