Session 4 – Defect Detection/Characterization

Session 4 Defect Detection/Characterization

Session Chairs Daphne D'Zurko, Northeast Gas Association David Batte, Pipeline Research Council International

> Facilitator Mauricio Palomino, GE

Attendance Breakdown

Approximate total attendance	60 persons at peak		
PHMSA, Federal Regulators	2		
National standards	1		
International standards	1		
Pipeline operators	20		
Service providers	20		
Researchers	20		

Note: only 30 (5 pipeline operators) present when priorities were voted

GAP Analysis – Summary of Capabilities

Industry Needs – Threats Technical Areas - Activities	MECHANICAL DAMAGE Dent, gouge, dent+gouge	CORROSION Ext (int)	SCC Ext (int)	CONSTRUCTION DEFECTS Girth Weld, Seam Weld, Body
DETECTION DISCRIMINATION	✓ ×	✓ ✓	? X	✓ ✓
SIZE / DEPTH ILI IN-DITCH	× ×	√ 2	× ×	√ 2
ASSESS FAILURE PRESSURE GROWTH RATE	×	· · · · · · · · · · · · · · · · · · ·	? X	: ✓ ?(BENIGN VS. ACTIVE)
UNDERSTANDING MECHANISMS Inc WHERE TO LOOK	×	? GROWTH RATE, MIC	? GROWTH RATE	✓
EFFECTIVE CODES Inc VALIDATION, QUALIFICATION, TRAINING	×	✓ ✓= largely C	× OK, × = needs	✓ s improvement

Phase 1 – Identified Gaps and Issues

DETECTION & DISCRIMINATION

- Discriminate MD secondary features... cracks, corrosion
- Benign vs. active construction defects
- ILI for SCC in gas pipelines
- Other in-ditch inspection technologies
- Guided wave performance: Influence of coatings, applicability to cased crossings, range extension, reproducibility, size thresholds etc
- Inspection through coating, internal scale
- Quantified Probability of Detection
- Note ... leak detection not discussed!

SIZE MEASUREMENT

- Sizing MD features, including secondary features
- Size accuracy... depth is critical, then length, width ...

→ ILI performance specifications (MD & SCC, corrosion)
 • Interacting cracks

SIZE CHANGE – GROWTH & DEGRADATION

- Growth rates for corrosion, SCC & MD
- Growth monitoring (online, real time)

Phase 1 – Identified Gaps and Issues (cont'd)

ASSESSMENT

- Failure Pressure of MD
- Screening Assessment for MD; discriminating secondary features
- Effects of residual stress, secondary loading, (ground movement, frost heave)
- Defects are more critical for high strength steels, high design factors
- Assessment of SCC & corrosion at MD
- Toughness vs. Charpy correlation
- Uncertainty of other properties, dimensions
- Delayed Failure: Assessment of MD

Influence of changing operation, load, Influence of changing environment

- SCC crack coalescence
- Collate & review damage experience and learn from it
- Validation of Models....pool of ex-service samples for testing (MD, SCC)
 → code improvements

Session 4 – Defect Detection/Characterization

Phase 1 – Identified Gaps and Issues (cont'd)

UNDERSTANDING THE MECHANISMS, KNOWING WHERE TO LOOK

- Microbial corrosion
- SCC, corrosion: site selectivity
- Distinguishing between rock dents and impact damage
- Coating degradation and disbond: when does corrosion/SCC start?
- Influence of toughness / ductility on delayed failure of MD

CODES, STANDARDS AND INDUSTRY GUIDANCE

- Field testing & demonstration of prototype vehicles, technologies
 - \rightarrow building confidence in capabilities, performance
- ILI performance specifications (corrosion, then SCC, MD)
- Use of complementary techniques to improve POD
- Independent loop test facilities; learning &training, calibration, certification
- Technology packages to support code improvements

Session 4 – Defect Detection/Characterization

Top 4 Identified R&D Gaps

Defect Sizing from Outside the Pipe (New / Improved Technology)

Defect Sizing using ILI (New / Improved Technology)

Validation, Testing & Qualification (Consensus Standard)

Severity Assessment of Mechanical Damage, [SCC, Corrosion] (New / Improved Technology)

Defect Sizing from Outside the Pipe

- New or improved technology, relevant to onshore (and offshore) gas and liquids lines, low (and high) pressure applications
- Addresses corrosion, mechanical damage and SCC defects
- Technology needs:
 - Improved sizing and location accuracy
 - Requirement for improved range
 - Focus on depth as opposed to cross-sectional area
 - Address influence of external condition of pipe coating, soil etc
 - Address internal pipe condition (as necessary)
- Implementation and deployment issues:
 - Certain coatings may be show-stoppers
 - Property variations of material
 - Availability of performance criteria, standard calibration
 - Knowledge, qualification and operator skill
 - Cost
- Timescale to complete research:
 - Guided wave : 1 3 yrs
 - Laser mapping, high resolution eddy current methods 1- 3 Yrs

Defect Sizing using ILI

- New or improved technology, relevant to onshore and offshore gas and liquids lines, high and low pressure applications
- Addresses corrosion, mechanical damage and SCC defects
- Technology needs (ILI for 'piggable' systems):
 - Improved sizing accuracy (depth, then length, width), resolution
 - Crack detection in gas pipelines (esp SCC)
 - Discrimination of secondary features (esp mechanical damage)
 - Requirement to increase range for low-pressure-system vehicles
- Technology needs (vehicles for 'unpiggable' systems):
 - Improved location and sizing reliability
 - Focus on depth as opposed to cross-sectional area
 - Address influence of external condition of pipe coating, soil etc
 - Address internal pipe condition (as necessary)
 - Range
- Implementation and deployment issues:
 - Piggability
 - Availability of standard calibration and facility to examine calibration
 - Uneven coating for ultrasound
- Timescale to complete research: 1 3 yrs accelerate if possible

Validation, Testing & Qualification

- Revised standards, guidelines and recommended practices, relevant to onshore and offshore gas and liquids lines, high and low pressure applications
- Addresses corrosion, mechanical damage and SCC defects
- Impacts on a wide range of existing industry standards (ASME, API, NACE etc) and government regulations
- Needs:
 - Validation of new inspection/detection technologies and analysis methods for defect detection and characterization, using
 - Full-scale laboratory-based testing pipe failure tests, vehicle pullthrough tests; this requires a pool of ex-service pipe samples
 - Field trials/demonstrations to establish capabilities and build confidence
 - Quantification of performance specifications
 - Independent calibration/certification of accuracy and reliability (detection, identification, false calls, dimensions)
 - A 'learning test loop' for capability assessment, training and qualifying operators
 - Technology packages to support improvements in codes and regulations
- Timescale for completion: 2-5 years

Assessment of Mechanical Damage, (and SCC, Corrosion)

- New or improved technology, relevant to onshore and offshore gas and liquids lines, high and low pressure applications
- Addresses mainly mechanical damage, but also SCC and corrosion defects
- Technology needs:
 - Improved screening assessment (Level 1), including discrimination of secondary features affecting damage severity
 - Improved methods for detailed assessment (Level 2, 3)
 - Methods for assessing immediate failure and delayed failure of mechanical damage (including the effects of changed loading, environmental conditions)
 - Growth rate data (esp depth) for time-dependent failure of corrosion, SCC
 - Defect criticality in higher strength steels and at higher design factors
- Implementation and deployment issues:
 - Critical to maximize collaboration between inspection companies and pipeline operators in order to learn from trials, early operational experience etc
 - Damage + corrosion/SCC is an additional complication, requiring assessment methods
 - Impact of new fuels on internal corrosion/SCC
- Timescale to complete research:
 - Screening assessment: 1-3 years; accelerate if possible
 - Detailed methods for all situations: 3-10 years

Additional Gaps

See the earlier slides on

Detection and discrimination Size measurement Size change – growth and degradation Assessment Understanding the mechanism – knowing where to look Codes, standards and industry guidance