Characterization of Pipeline Defects

Presentation at the 2007 DOT R&D Forum New Orleans

Thomas J. Picciott Manager, Gas Engineering February 7-8, 2007

nationalgrid

NG's current service territory covers 4,500 square miles and serves 549,300 customers.

Infrastructure

- 22 Gate stations (delivery points)
- 278 Miles Transmission main (pipeline)
- 387 Gas regulating stations (pressure reducing)
- 7,948 Miles distribution main
- 490,790 Services
- 562,711Meters
- 314,271 Service regulators

National Grid Gas Transmission In Upstate N.Y.

- 278 miles transmission pipe
 - 170 miles > 30% SMYS
 - 108 miles 20% 30% SMYS
 - 190 miles constructed prior to 1970
 - 58 miles in HCAs
 - Most one way feed

Stress and Flaw Depth Relationship

Where:

- **P** = Pressure (psig)
- **D** = Outside Diameter (inches)
- **t** = Pipe Wall Thickness (inches)

Material Strength = Specified Strength of the Material

Low Stress vs High Stress

Low-stress lines are inherently less risky than high-stress lines, specifically:

- Consequences of failure are reduced ("potential impact area" is reduced).
- Likelihood of failure is reduced for third party damage, internal and external corrosion (larger and deeper defects are required to cause failure).
- Failure modes pose less risk (leak vs. rupture).

- where P_f ratio = Predicted failure pressure ratio of a defect
 - P_f = Predicted failure pressure of a defect (determined by B31.G or equivalent)
 - MAOP = Maximum Allowable Operating Pressure of the Pipeline

Figure 7-1 contains three plots of the allowed time to respond to an indication. The figure is applicable to the prescriptive-based program. The intervals may be extended for the performance-based program, as provided in Section 7.2.5.

Corrosion Defect

1931, 18" diameter, .312" wall, seamless, Grade B pipe, operating pressure - 300 psi, stress - approximately 25%.

Mechanical damage

1951, 12" diameter, .312" wall, seamless, Grade B pipe, operating pressure - 237 psi, stress - approximately 13%.

Characterization by Threat

Time Dependent	 External corrosion Internal corrosion Stress corrosion cracking
Stable	 4. Manufacturing Related Defects: Defective pipe seam Defective pipe
	5. Welding/Fabrication Related:
	 Defective pipe girth weld Defective fabrication weld Wrinkle, bend or buckle Stripped threads/broken pipe/coupling failure
	6. Equipment:
	 Gasket o-ring failure Control/relief equipment malfunction Seal/pump packing failure Miscellaneous

Characterization by Threat (cont.)

	7.	Third Party/Mechanical Damage:
		• Damage inflicted by first, second or third parties (instantaneous/immediate failure)
		• Previously damaged pipe (delayed failure mode)
		• Vandalism
Time Independent	8.	Incorrect Operations:
		Incorrect operational procedure
	9.	Weather Related and Outside Force:
		• Cold weather
		• Lightening
		Heavy rain or floods
		• Earth movements

<u>Three Sections of the Federal Code that</u> <u>address Pipeline Defects</u>

- 192.307 & 309 Construction
 192.711 & 713 & 717 Operation
- 102.022 Integrity Management
- 192.933 Integrity Management

Construction (192.307 & 309) (>20% SMYS)

- Each imperfection that could impair serviceability must be removed or repaired
 - Grinding repairs are permitted provided min. wall is maintained
- Dents must be removed as follows
 - with stress risers, effect longitudinal or seam welds
 - >40% SMYS ¹/₄" deep or larger for <12" diameter
 - >40% SMYS 2% or larger for 12" diameter or greater

Operation (192.711-717) (>40% SMYS)

- Each imperfection that could impair serviceability must be removed or repaired
 - "Repair by a method that reliable engineering tests and analysis show can permanently restore the serviceability of the pipe"

Each leak must be repaired by

- Removing and replacing a cylinder containing the defect
- Clamp or welded patch over corrosion
- Other method that can permanently restore serviceability

Integrity Management (192.933) (>20% SMYS)

"An operator must take prompt action to address all anomalous conditions..." as follows

- Immediate repair condition
 - Defects with a failure pressure ratio of 1.1 or less
 - Dents that contain stress risers
 - Any defect the operator deems necessary
- One year condition
 - Plain dent >6% (.5" for <12" dia.) in upper 2/3
 - Plain dent >2% (.25 for <12"dia.) effecting a girth or seam weld
- Monitored conditions
 - Plain dent >6% (.5" for <12" dia.) in lower 1/3
 - Plain dent >6% (.5" for <12" dia.) in upper 2/3 w/critical strain levels not exceeded
 - Plain dent >2% (.25" for <12" dia.) effecting a girth or seam weld w/critical strain not exceeded

Characterization of Defects

- 1. <u>Immediate</u> Defect is at or near failure point. operators to make prompt repairs.
- 2. <u>Scheduled</u> Defect is significant but not at failure point.

operator to schedule repairs based

on the severity of the defect.

3. <u>Monitored</u> - Defect will not fail before next inspection.

operator to monitor the indication's growth at scheduled intervals.

Boils Down to Four Types of Defects

- Cracks
- Plain Dents
- Corrosion- Metal Loss
- Mechanical damage- Dents w/gouges

Occur due to:

- Poor material properties- Manufacturing
- Poor welding- Construction
- SCC- Condition specific

Controlling the process and environment can limit the existence of these type of defects

Plain Dents

Occur due to:

- Installation/Construction
- Ground movement/settling

 Buckling

 Some rock impingement

Plain Dents are normally not harmful provided they are not extremely large

<u>Corrosion</u>

- We know the most about
- Understand
 and con r
 - and can model:
 - Behavior leak vs. rupture
 - Growth Rates
 - Failure mechanisms
 - Mitigation/prevention

Our challenge is finding and sizing defects prior to failure

Mechanical Damage

- To effectively manage requires prevention
- Difficult to mitigate due to random/time independent nature of the defect
- Almost all fail immediately
- Those that do not can remain latent for years
- Most complex failure mechanism
- Tendency to rupture rather than leak

Detection and sizing are key to analysis of latent defects

Failure from Mechanical Damage

1964, 16" diameter, .250" wall, ERW, X-42 pipe, operating pressure - 490 psi, stress - approximately 40% SMYS

Failure Mode - Latent Third Party Damage

- B31.8S and IMP Regulations
- Develop Direct Assessment ICDA&ECDA
- ILI advancements

- Robotics & Sensors for Autonomous inspections
- Advance Development of Guided Wave

- Third Party Monitoring / Listening devices
- Advancements in leak
 detection

- Ground probing radar and other locating devices
- Implement GIS and GPS mapping techniques

 Constructed pipe beds to test new technology

What are we doing

 Long Term Monitoring using Guided Wave (MsS)

 Mini-Camera for Inspection of Cased Crossings

What are we doing

 Acoustic Stand-off Technique for Internal/External Inspection

What Remains to be done?

- New sensors for detecting defects
- Non intrusive inspections
- Further engineering evaluation of defects and failure mechanisms
- Reconcile %CSA to % thru wall
- Improve locating methods/ devices
- Education
- Damage Prevention technology