STRESS-CORROSION CRACKING DIRECT ASSESSMENT

Current Research and Future Needs

Raymond R. Fessler

BIZTEK Consulting, Inc.

820 Roslyn Place. Evanston. IL

847-733-7410

BIZTEKrrf@aol.com

Government/Industry Pipeline R&D Forum

New Orleans

February 8, 2007

SCC DA

- Identifying locations of highest probability of SCC is critical to success
- NACE RP 0204 provides general guidance on factors to consider but little specific guidance
- Some companies have developed useful correlations from extensive dig programs or ILI runs

J. A. Beavers and W. V. Harper,

"SCC Prediction Model" NACExpo 2004

- Gas transmission pipeline, primarily asphalt enamel coating, DSAW
- Near-neutral-pH SCC
- Conclusions
 - 18 times more likely to find SCC with one manufacturer than with other manufacturers A
 - 3 times more likely to find SCC with asphalt than with other coatings (coal tar, epoxy urethane, FBE and wax) (No tape coating on the line)
 - 4 times more likely to find SCC with glaciofuvial soil than with lacustrine soil

IPC04-0586: SCC Integrity Management Case Study - KinderMorgan Natural Gas Pipeline of America, J. D. Davis, et. al.

- Near-neutral pH SCC on a gas pipeline
- Verified model with 6 digs
 - 5 true positives
 - 1 true negative
 - No false positives or negatives
- Three important parameters
 - **Mild corrosion** (<10% w.t.) determined with high-res. MFL tool
 - Intact (but disbonded) asphalt coating as determined from closeinterval on/off P/S survey (No SCC under coal tar)
 - Alluvial deltaic modified sands where drainage was influenced by topography

IPC04-0267: A Statistical Model for the Prediction of SCC Formation Along a Pipeline, O. Youzwishen, et. al.

- Tape coated, ERW, liquid pipeline
- Near-neutral-pH SCC
- Model based on ~120 digs, confirmation based on 11 digs
 - 7 true positive, 1 true negative, 3 false positives
 - 48% of "corrosion" digs found SCC
- Most important parameters: Proximity to mild corrosion and CP level
- Other relevant parameters: CP shift, ground depression, bend angle of the pipe, direction of the bend
- More confirming activities are planned

IPC04-0375: SCC Detection and Mitigation Based on In-Line Inspection Tools, W. Kresic, et. al.

- Near-neutral-pH SCC on liquid line
- Developing correlation with pressure cycles and soil/terrain

The Enbridge 15-5-1 Approach - Loading Rate Analysis

CONSULTING

Factors Correlating with SCC Sites from Past Field Studies

	High pH Gas P/Ls	NN pH Gas P/Ls	NN pH Liquid P/Ls
Proximity to other SCC failures	Strong	Strong	Strong
Discharge of compressor station	Strong	Medium	Medium
Suction of compressor station	Negative	1 case	Medium
Temperature	Strong	None	None
Class I location	Strong	Strong	Strong
<i>Age (> 15 years)</i>	Strong	Strong	Strong
Coating type (tape, coal tar, asphalt)	Strong	Strong	Strong
Coating condition (disbonded)	Strong	Strong	Strong
Soil moisture level	Medium	Medium	Medium
Mild corrosion	None	Medium	Medium
Stress cycles (R & frequency)	??	??	Strong
Soil type	None	Area specific	Area specific
Terrain	Weak	Area specific	Area specific

- Guidelines for the Identification of SCC
 Sites and the Estimation of Intervals for
 SCC DA
 - NRTC plus various subcontractors
 - Funding from PHMSA and PRCI
 - Initial approach: Mechanistic model based upon information from literature
 - Added approach: Validate model with field experience from industry survey

- SCC Data Mining
 - BIZTEK Consulting plus subcontractors
 - Funding from PRCI
 - Approach: Correlate severity of SCC as determined from ILI, hydrotesting, or extensive dig programs with operational and environmental factors
 - Gas and liquid pipelines
 - High-pH and NN-pH SCC

- JIP on Management of SCC in HCAs on Gas Pipelines
 - BIZTEK Consulting and Macaw Engineering
 - Funding from El Paso, Great Lakes, Panhandle, Spectra, and TransCanada
 - Approach: Develop more specific guidelines based upon industry experience

- Field Studies to Inspect for SCC
 - Various pipeline companies
 - Self funded
 - Approach: Develop algorithms for locating SCC based upon ILI, hydrotest, or dig programs

SCC DA -- Remaining Gaps

- Crack growth rate models based on measurable parameters, with emphasis on the effects of pressure fluctuations
 - Useful for selecting sites, determining intervals, and possibly prevention or mitigation
 - Parameters
 - High pH and NN pH
 - High and low amplitudes, high and low frequencies
 - Differentiate between corrosion fatigue and SCC
- More field correlations

