# Guided Wave Testing for Inspection of Unpiggable Pipelines

Peter Mudge, TWI Ltd.
Joe Rose/Mike Avioli, FBS Inc.
Daphne D'Zurko, Northeast Gas Assoc.
DoT: DTRS56-05-T-0002





#### Industry Needs

- Methods of examination of unpiggable lines and areas which are hard to access,
- Techniques which have a demonstrated and predictable level of test coverage,
- Techniques which are sensitive to defects of types and sizes of relevance to operators,
- Demonstrated performance for defect detection and freedom from false calls.
- Ease of operation by appropriately qualified personnel





#### Guided waves offer:-

- Reduction in the costs of gaining access to the pipes for inspection,
- Avoidance of removal and reinstatement of insulation or coatings,
- The ability to inspect inaccessible areas, such as at clamps and cased or buried pipes,
- The whole pipe wall is tested, thereby achieving a 100% examination,
- Cost effective screening of pipes to optimise follow up activity.





#### FBS Collaboration with Pi/TWI (7 years)



- Frequency Tuning
- Focusing Theory





- Teletest
- Axisymmetric Inspection



#### On going collaborative activities:

- Focusing in and around elbows
- Improved circumferential sizing and location
  - Enhanced performance in coated pipes
- FBS is an authorized sales rep for Teletest Focus





### Project Objectives

- To further develop and to validate guided wave inspection techniques for detection of internal and external defects in unpiggable pipelines.
- Specifically:-
  - Production of field validated procedures,
  - Inclusion of enhanced procedures for detection and evaluation of defects,
  - Assessment of coated and buried pipelines,
  - Validation data to demonstrate performance,
  - Guidance for industrial application of techniques.





# The method is sensitive to the defect area which interacts with the advancing wave







### Findings from TWI/FBS/NGA Study

- Use of 2 wave modes (L & T) increases probability of detection (PoD) by "Redundancy and Diversity". (Use of two independent tests each with a PoD of 80% gives a combined PoD of 98.4%),
- Each mode has a different sensitivity to particular types of defects,
- Mode conversions from a defect can be a combination of longitudinal and torsional modes despite only one mode being transmitted,





### Findings - continued

- Focusing of ultrasound improves signal to noise ratio (reduces false calls) and decreases the defect size limit for detection by a factor of 4,
- Focusing the ultrasound increases the penetrating power (increases the test range) in the presence of coatings



### Focusing of ultrasound







#### Benefits of focusing



Focusing allows the energy to be concentrated where the defect is, increasing sensitivity and giving position and size information









## Increased detection by focusing



The 40 kHz L [m, 2] mode group focused at z= 32.8



Figure A4-5.

Sample circumferential octant profiles showing a defect at about 180°. [16"

coated pipe at Johnson City NY]



# Probability of Detection (PoD) Characteristics







### Probability of a false call (PoF)







#### Experimental PoD for Guided Waves







#### Focused results from lab tests







## Effect of focusing, 12" type 1 defect







# Cased pipes, NYSEARCH Facility







#### Detection summary

- Demonstrated benefit of "redundancy and diversity" approach,
- Improvements to signal to noise by focusing enhances detection,
- Detection performance in the field appears better than on manufactured specimens,
- Gathering of sufficient data to demonstrate performance is a large task,
- Interpretation of signals is a skilled task,
- Small number of qualified interpreters





#### Defect detected in coated and buried line







### Location and Sizing

- Amplitude based sizing is unreliable (as for conventional UT),
- Spatial information provided by focusing allows the possibility of quantitative sizing,
- Directionality allows discrimination of defects from welds, spacers etc.





# Focused responses - defects at 90 and 180 degrees









#### Non-directional response from a weld







#### Focusing summary

- Focusing allows an improvement in signal to noise ratio, which:
  - Increases the chances of detection, 6dB to <u>infinite</u> signal to noise improvement
  - Lowers the limiting size of defect for detection,
  - Reduces the chances of false calls,
- Focusing provides positional information, which:
  - Assists the operator in interpretation of the type of reflector (defect vs. pipe feature),
  - Allows the circumferential position and extent to be determined,
  - Allows greater certainty in defect depth determination.





### Coatings

- The effect of coatings is highly variable,
- Materials, thickness, method of application and even temperature affect the attenuation and scattering of ultrasound,
- Coatings can affect the detection performance by reducing the signal to background ratio. Small defects may not be seen and false calls increase,
- Pre-measurement of ultrasonic properties can predict the test range and aid planning of location of excavations etc.





#### Effect of temperature on detection







# Gain improvements in coated pipe by focusing







#### Coating characterisation

- Measurement of coating properties locally,
- Determination of sound attenuation (and hence test range),
- Determination of dispersion (characteristic) curves for specific tests,
- Prediction of spacing and number of test points (excavations).







#### Field operations

#### Needs:

- Procedures with demonstrable performance expectations
- Efficient operation by test technicians with industry standard qualifications and experience
- Rapid turn around of results



#### Automated test software





### Automated application of focusing



World Centre for Materials Joining Technology



#### Recommendations for future directions

- Pipeline operators need to have confidence in test range (e.g. across a cased crossing) and detection performance,
  - Coating characterisation to allow efficient inspections under a variety of field conditions,
  - Quantitative sizing of defects,
  - Enhancements to procedures and equipment to incorporate developments of compensation for coatings and defect sizing,
  - Validation data on structurally significant defects to allow industry acceptance,
  - Better discrimination between pipe features and defects,
  - Extension of capabilities to include geometry effects such as elbows.



