Government / Industry Pipeline R&D Forum February 7 & 8, 2007

> Session 4 Defect Detection and Characterization

> > Jerry Rau Panhandle Energy

Obligatory System Map Panhandle Energy New England Gas Company PG Energy Missouri Gas Energy Pannandle Eastern Pipe Line Transwestern Pipeline Trunkline Gas Florida Gas Transmission Southern Union • storage Gas Services nunkline LNG Sea Robin Pipeline

Panhandle Energy –

- •Approx . 19,000 Miles of Large and Small Diameter Transmission Pipeline
- •Transmission, Storage, Onshore, Offshore, LNG Facilities
- •79 Compressor Stations Over 2,000 Employees

Overview

What ILI can and can't see,

- or how interacting defects (dent w/ metal loss) are critical in response timing,
- or what is an appropriate sample size to verify conformance to ILI performance specifications
- or improvements in industry guidance and regulations???

Uncertainties

The accuracy and reliability of ILI measurements
The accuracy of severity assessment calculations
The reliability/accuracy of growth rate data for time-dependent defects
Defining the urgency of response
The safety of field crews during excavation and repair activities

Obligatory Data Map

Process Management

Panhandle Energy	Integrity Compliance Activity Manager Welcome Jerry Rau	Pipeline Integrity Group
Outlook Template	Schedule Report System Configuration General	📇 Print 🗐 Outlook 🖸 Logout
Protocol Area	Description Protocol Area Configuration Process List	
-Protocol Area Head	ler	r
Protocol Element	Remediation	
Sequence		
Processes List Show Description Reference links		

- ILI Discovery
 - Log receipt of final report from assessment vendor
 - Integrate data with pipe properties
 - Analyze data prior to classification of anomalous conditions
 - Were all monitored conditions from previous assessments included in the discovery?
 - Were any anomalies discovered that fell outside the definition of Immediate, Scheduled or Monitored?
 - Detail how these "Other" anomalies will be addressed and add to the excavation plan as required
 - Confirm Discovery was competed within 180 days of assessment
- Immediate Condition Response
 - Is this area one that we will be able to excavate within 5 days?
 - Aggregate and review data associated with the potential immediate condition
 - Notify management & gas control that immediate condition may exist
 - Meeting / conference to determine implications of pressure reduction and personnel required to implement
 - Make formal recommendations to management for reduced pressure
 - Confirm Gas Control notified and pressure reduced

ILI Sensor Technology

- Understanding Performance Characteristics and Limitations
 - Need to develop clear understanding of sensor capabilities with respect to different materials, sensor package, pipe geometry/cleanliness
 - What are nominal expectations for each of the technologies, and across all vendors
 - How can more precise measurements from subsequent inspections and in-ditch verifications be used to "close the loop" on performance of tools?

Sensor Technology

Oetection of Cracks/SCC In-ditch methods for finding and sizing SCC Cased Pipes Small Diameter Lines - Are inspection pigs needed? - What minimum size should be investigated? New Technologies are Needed - For unpiggable lines; e.g., pig on a stick - For patched pipe - For non-metallic materials Apply existing technologies from exploration and production sector Maximize data acquisition

Mechanical Damage

What are immediate needs?

- Screening and ranking tools for decision-making
- -Guidance to make life predictions and prioritize maintenance operations
- Tools to locate and quantify all parameters needed for assessment models

Severity assessment

Guidance on acceptable levels of damage

 Methods to locate and repair damage in difficult to inspect areas

Mechanical Damage

- Need to develop acceptable definitions for
 - Cracks
 - No guidance exists for definition of cracks significant vs. microcracks
 - Can quantitative models of damage assist development of definitions?
 - Ripples/wrinkles

 Inspection tools need to consider variations in steel grade and non-metallic materials

When to Repair

- Primary need is to transfer technologies to practices and implement in standards to influence regulatory activities as quickly as possible
 - Technologies to address accurate corrosion rate determination to quickly address intervals
 - Post ILI calibration technologies to address intervals

What is the technology needed to support repair decisions?

How do you mine existing datasets to learn from and provide practical guidance?