gti

The operating implications of distributing Hydrogen/Natural Gas mixtures and other new fuels

> > Glyn Hazelden Gas Technology Institute

DOT/PHMSA Pipeline R&D Forum

Overview

- > Many projects exist to examine delivering Hydrogen, some by using existing pipelines
- > One approach involves mixing hydrogen and natural gas and distributing in the existing pipeline network
- > Newer methane sources are also being considered, such as biogas, landfill gas and LNG
- > Pipeline quality standards are targeted to traditional natural gas sources

Overview

- > There are currently approximately 700 miles of hydrogen pipelines operated in the USA
- > Natural Gas transmission lines total approximately 300,000 miles (non-gathering)
- > The natural gas industry distributes energy through approximately 1,100,000 miles of mains
- > Issues with Distribution from new fuels are unique and different from Transmission

THE HYDROGEN ENERGY SYSTEM

DOT/PHMSA Pipeline R&D Forum

Background- Manufactured Gas

Component % volume		<u>USA</u>	<u>UK</u>
CO ₂		2.4	2.5
O ₂		0.8	1.0
C ₃ H ₆ (aggregate)		3.0	3.0
СО		7.4	14.0
H ₂		48.0	47.0
CH ₄		27.1	23.5
N ₂		11.3	9.0
Specific Gravity		0.42	0.48
Calorific Value	btu/ft ³	540	480
	MJ/m ³	20.1	17.9

DOT/PHMSA Pipeline R&D Forum

Background - properties

Characteristic	Hydrogen	Natural Gas
Calorific Value (MJ/m ³)	13	39
Diffusion coefficient (cm ² /sec)	0.61	0.16
Density, gas (kg/ m³)	0.0838	0.651
Flame velocity (laminar) cm/s	265	34
Flammability range % air	4 - 75	5 - 15
Energy required for ignition (MJ)	0.02	0.29

Background – properties of mixtures

		Hydrogen/natural gas blends		
		0/100%	5/95	10/90
Calorific value	btu/ft ³	1030	995	960
	MJ/m ³	38.37	37.07	35.77
Specific Gravity		0.6	0.570	0.550
Relative energy		1.0	0.966	0.932
Volume req. to equivalent		1.0	1.035	1.073
natural gas energy				

Distribution System Design

> Sizing of Network Components

- Increased volumes
 - > Mains
 - > Services
 - > Meters
- > Regulator/Meter Stations
 - Sizing

Distribution Operating Issues

- > Materials
 - Leakage
 - > Permeation
 - > Threads and fittings
- > General Hydrogen Safety

Operating Practices

- > Odorization
- > Leak Survey
- > Leak Investigation
- > Safety Procedures

Operating Practices

- > Other procedures
 - Measuring Heating Value
 - Purging
 - Squeeze off
 - Vacuum Excavation
 - Billing Customers
 - Gas Contracts
- > Jurisdictional Regulations

Pipeline Quality Standards

> FGT Recent Gas Quality Tariff Provisions

- HV 1025 1110 Btu/scf
- Wobbe Number 1340 1396
- Hydrocarbons C1 85% or greater
 - > C2, 10% or less, C3, 2.75% or less
 - > C4, 1.2% or less, C5+ 0.12% or less
- CO2 and N2 3% or less, no more than 1% CO2
- O2 0.25% or less
- H2S less than 0.25grains per ccf
- Total sulfur, less than 2 grains per ccf
- Water vapor less than 7 lbs per mmcf

DOT/PHMSA Pipeline R&D Forum

New Fuels

- > Current pipeline gas quality standards may not be adequate
 - Mercury
 - Heavy metals
 - Microbial content (potentially leading to MIC corrosion)
 - Particulate sizes
 - Ammonia
- > We need to know what the new fuels may do to the pipeline system, and how they impact end users

Standards Review

Some areas identified in a recent (pure Hydrogen) project:

- Operator Qualification
- Class Location parameters
- Pipeline integrity management parameters
- Odorization issues
- Conversion of service
- Pipe materials
- Joining
- Emergency Plans
- Leak survey/instrumentation
- Purging/abandonment

Summary

- If existing pipeline networks can be safely used without significant modification, adopting new fuels as viable energy sources will be more widely accepted.
- > Physical characteristics' differences will require some changes in practices and procedures.
- > Distribution pipeline operators must be confident their facilities can operated safely and cost effectively when delivering the mixtures discussed.
- > We need to understand the new fuels better
- > There must be a new view of pipeline quality standards

GTI is the leading research, development and training organization serving energy markets. GTI is meeting the nation's energy and environmental challenges by developing technology-based solutions for consumers, industry, and government.

glyn.hazelden@gastechnology.org GTI 1700 S. Mount Prospect Road Des Plaines, IL 60018-1804, USA Tel +1 847-768-0890 Fax: +1 847-768-0569

www.gastechnology.org

DOT/PHMSA Pipeline R&D Forum