DEFECT DETECTION AND CHARACTERIZATION IN PIPELINES

Current Programs at SwRI

Gary Burkhardt Southwest Research Institute

Government/Industry Pipeline R&D Forum February 7, 2007 New Orleans, LA

TARGET AREAS

Inspection of unpiggable pipelines
 Monitoring of cased pipelines
 Characterization of mechanical damage defects

APPLICATION OF REEC TESTING TO INSPECTION OF UNPIGGABLE PIPELINES

U.S. DOT-PHMSA Contract No. DTRS56-02-T-0001

Northeast

Participation by Northeast Gas Assn. **Carnegie Mellon** U.S. DOE-NETL **Carnegie Mellon**

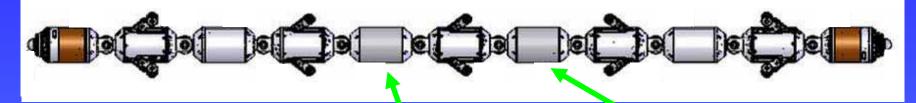
PROBLEM

Some pipelines are "unpiggable" and cannot be inspected

Low Flow Rates Low Pressures Branch Connections Non-Circular Valves 90-degree Elbows Multiple Diameters No Launch Traps

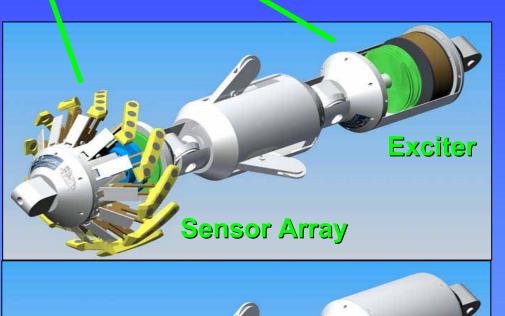
Project Objectives

- Develop remote field eddy current (RFEC) inspection system for natural gas pipelines that are currently unpiggable
- Accommodate obstacles such as elbows and Tees
- Integrate RFEC system with Carnegie Mellon robot
- Demonstrate in operating pipeline


APPROACH

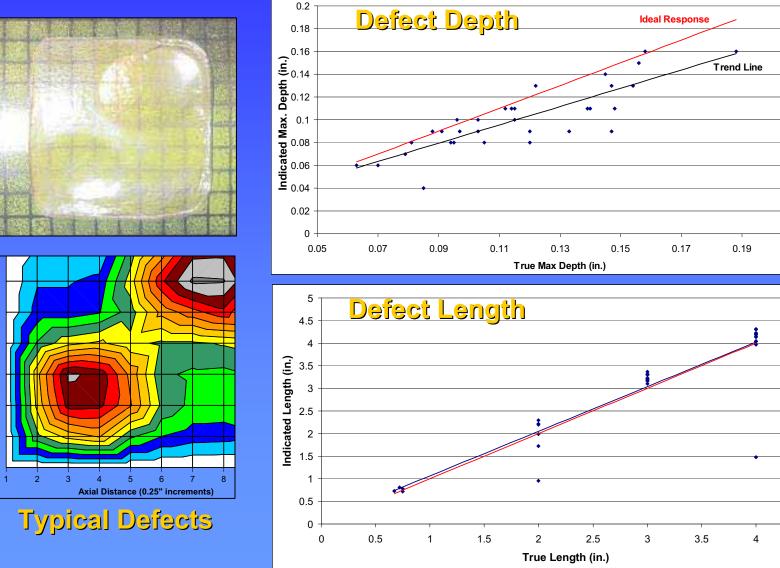
Use remote-field eddy current (RFEC) method

- RFEC system can adjust to variable pipe size and retract to pass through obstacles
- Detects ID and OD corrosion defects
- Can characterize defect depth, length, width
- Integrate RFEC with Carnegie Mellon Explorer II robotic transport system
 - Adjusts to variable pipe size and retracts to pass through obstacles
 - Self-powered
 - Nontethered—wireless remote control
 - Launched while pipe in service



RFEC DESIGN FOR EXPLORER II

CMU Explorer II Robot


SwRI RFEC Inspection Modules

BLIND TEST DEFECT CHARACTERIZATION

(Breadboard System)

0.21

Slide 8

CURRENT STATUS/PLANS

- RFEC modules undergoing fabrication and testing
- Integration with Explorer II robot in Spring 2007
- Demonstration on live pipeline in Summer 2007

Expected Outcome

Inspection system for 6-8 inch pipelines that can negotiate 90 deg. elbows and Tee joints

- Analysis capability to characterize depth, length, & width of wall-loss defects
- Demonstration in live pipeline
- Transfer of technology

LONG-TERM MONITORING OF CASED PIPELINES USING LONG-RANGE GUIDED-WAVE TECHNIQUE

SwRI Project 14.12266 for NYSEARCH/NGA and DOT/PHMSA

Slide 11

PROBLEM

INSPECTION of CASED LINES AT ROAD CROSSINGS

High-consequence area
 Require direct assessment (DA)
 Access is difficult, need remote inspection technique

PROJECT OBJECTIVE

- Apply Magnetostrictive Sensor (MsS) long-range guided-wave testing to "cased crossings"
- Develop defect characterization capability
- Develop long-term monitoring capability using permanently installed sensors
- Perform field validation

Mss (MAGNETOSTRICTIVE SENSOR)

- MsS is a guided-wave probe that uses magnetostrictive effects for wave generation and detection
- Thin, ferromagnetic strips are bonded around pipe with encircling coils over the strips
- Sensors are inexpensive and suitable for long-term monitoring

MsS TEST SETUP ON A CASED-LINE MOCKUP

PROJECT STATUS/PLANS

Defect signal modeling refined and validated

Defect characterization algorithm development & software improvement underway–complete in March 2007

Field evaluation to begin in April 2007
Now York

In NGA's test bed in Binghamton, New York

EXPECTED OUTCOME

- Defect signal simulation software
 Data analysis software for inspection
 - and monitoring
 - Including some capability of defect sizing
- Procedures for sensor installation for long-term monitoring
- Determine capabilities and limitations of long-range guided wave technique for cased pipeline

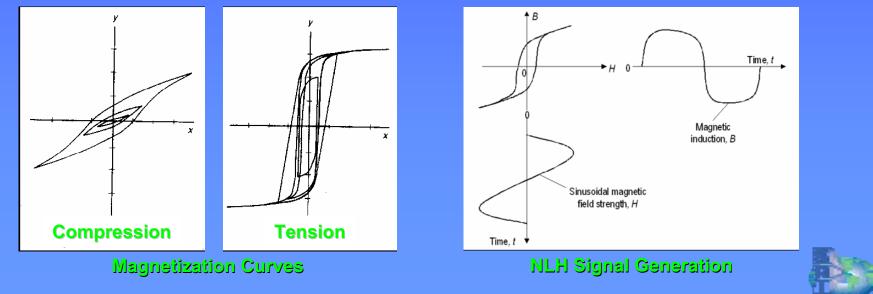
NONLINEAR HARMONIC (NLH) MONITORING OF GOUGED DENTS IN PIPELINE SPECIMENS UNDER CYCLIC LOADING

U.S. DOT-PHMSA Contract No. DTRS 56-04-T-001 and PRCI Contract GRI 8715

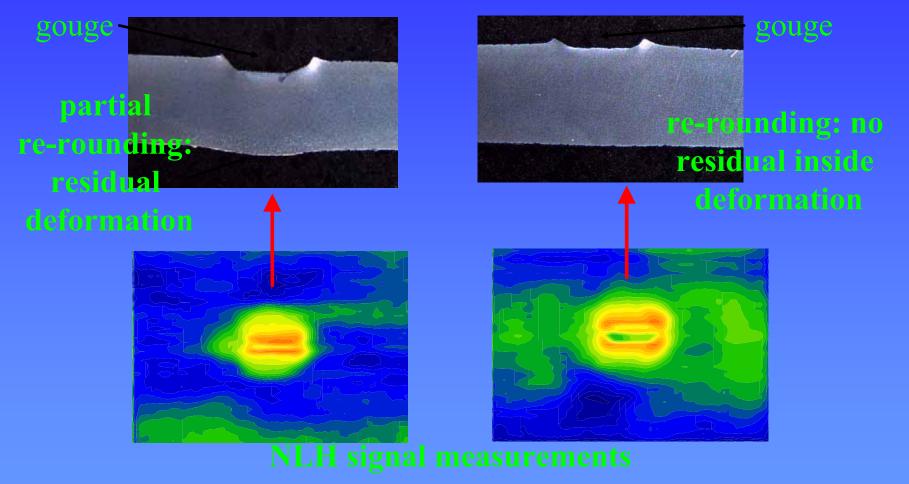
PROBLEM

Delayed failures from mechanical damage are related to time-dependent accumulation of damage (e.g. fatigue cracking)

Current ILI systems cannot determine mechanical damage severity

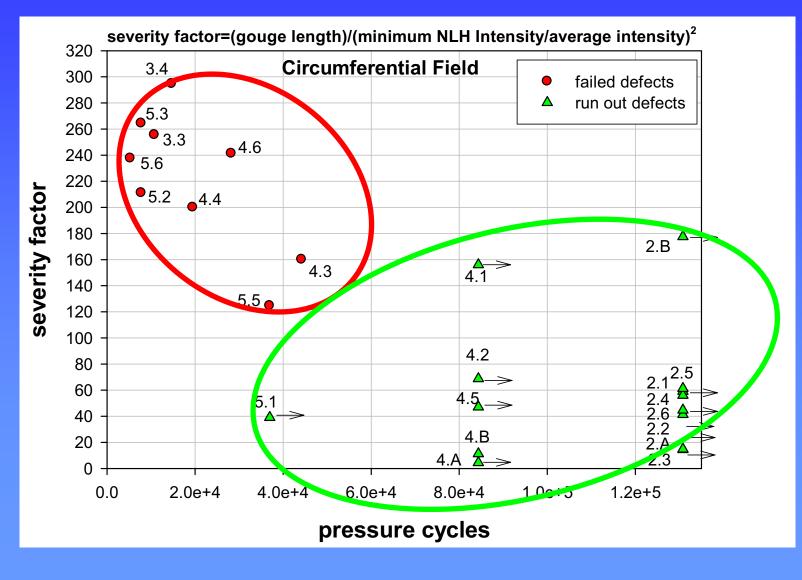

PROJECT OBJECTIVES

- Measure Nonlinear Harmonic (NLH) signals as a function of pressure cycles on full-scale pipe segments containing realistic gouged dents
- Derive NLH-based defect severity criteria related to fatigue life (delayed failure)
- Transfer NLH technology to ILI company (Tuboscope)


NONLINEAR HARMONICS (NLH)

- Uses AC magnetic field to locally infer magnetic properties of steel
- Strain anomalies produced by gouging change magnetic properties of steel and sensed by NLH

Slide 21


NLH RESPONSE TO GOUGING-INDUCED STRAINS

Calipers and other ILI methods may miss re-rounded defects.

NLH DEFECT SEVERITY FACTOR RELATED TO FATIGUE LIFE

Slide 23

PROJECT OUTCOME

- NLH detects strain due to gouge-like defects even after re-rounding
- NLH severity index ranks the severity of gouge-like defects against fatigue (delayed) failure
- NLH severity index specification provided to ILI vendor and demonstrated in analysis software

