Technologies Supporting Higher Stress Level Operation

David Johnson
Background - 1

• Traditionally, pipeline operation in U.S. limited to 72% of SMYS
 – Typical mill test to 90% SMYS
 – Operate at 80% of test

• Provided lots of margin for tolerances in
 – Dimensions
 – Properties
 – Processes
Background - 2

• Why increase to 80%?
 – Consistent with other codes
 – Several “grandfathered” lines there now
 – Operating pressure / stress level - Not a primary driver for risk

• Manage active integrity threats
 – Materials – Excavation
 – Construction – Outside force
 – Corrosion – Equipment
 – Operations
Background - 3

• Increased utilization of existing infrastructure (300k miles)
 – Public impacts
 – Construction impacts
 – Environmental impacts
 – Land utilization
 – Resource utilization

• Where to look?
 • Over 50 years of R&D
Key Areas

• Pipe Design
 – Fracture Control Plan
 – Carbon Equivalents
• Coatings
• Weld Inspection
• Pressure Testing
• ILI & DA
• Threat Assessments
• Repairs
Technology Development

• Pipe fracture control plan
 – Defect tolerance – stable, leak, rupture
 – Dynamic behavior – propagate/arrest

• Carbon equivalents & hardness
 – Hardenability
 – Cracking potential
Technology Development

• Pipe coatings
 – Application & testing
 – Effectiveness

• Weld inspection
 – X-ray & UT
 – Defect limits
 – Workmanship vs. ECA Criteria
Technology Development

• Pressure testing
 – Technical understanding
 – Engineered tests

• Corrosion Control
 – ILI
 – DA – EC & IC
 – CP
Technology Development

• Threat Assessments – Identify & Manage
 – Materials
 – Construction
 – Corrosion
 – Operations

• Repairs (Pipeline Repair Manuals)
 – Materials
 – Techniques
Technology Publications (too numerous to list)

- PRCI

 http://www.prci.org/publications

- GTI

 http://www.gastechnology.org

- PHMSA

 http://primis.phmsa.dot.gov/rd
<table>
<thead>
<tr>
<th>Project Code</th>
<th>Project Title</th>
<th>Team Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-186-9706</td>
<td>Effects of Pressure Fluctuations on Near-Neutral SCC Propagation</td>
<td>Team Leader - Torgunrud</td>
</tr>
<tr>
<td>PR-186-9709</td>
<td>Integrity and Remaining Life of Line Pipe with Stress Corrosion Cracking</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-187-821</td>
<td>Pulsed Gas Metal Arc Welding of API 5LX-80 Pipe</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-187-9212</td>
<td>Controlling Segregation in Plates and Strip for Linepipe Produced from Continuously Cast Slabs</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-187-9602</td>
<td>Tensile Property Variation in DSAW and ERW Line Pipe</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-184-719</td>
<td>Energy Based Pipe-Soil Interaction Models</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-194-719</td>
<td>Pipe-Soil Interaction Tests on Sand and Soft Clay</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-198-808</td>
<td>Development of Ultrasonic Vehicle for the Detection of Stress Corrosion Checking in Buried Gas Pipelines</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-198-9108</td>
<td>Development of Inspection Vehicle to Detect SCC in Natural Gas Lines</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-201-9707</td>
<td>Fatigue Strength of Seamless Line Pipe and Modern ERW Line Pipe</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-202-009</td>
<td>Fracture Behavior of Girth Welds Containing Natural Defects, Comparison with Existing Workmanship Standards</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-202-219</td>
<td>Effect of Defect Size and Yield to Tensile Ratio on Plastic Deformation Capacity Pipeline Stress</td>
<td>Team Leader - unavailable</td>
</tr>
<tr>
<td>PR-202-011</td>
<td>Fracture Behavior of Large Diameter Pipeline Girth Welds: Effect of Weld Metal Yield Strength - Part I [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>PR-202-011</td>
<td>Fracture Behavior of Large-Diameter Pipeline Girth Welds: Effect of Weld Metal Yield Strength and Defect Interaction, Part II [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-922</td>
<td>Effect of Weld Metal Yield Strength and Defect Interaction on Pipeline Performance, Volume II [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-922</td>
<td>Effect of Weld Metal Matching on Girth Weld Performance Vol. I [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9326</td>
<td>Weld Metal Yield Strength Testing of Girth Welds [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9327</td>
<td>Effect of Defect Size and YS/TS Ratio on the Plastic Deformation Capacity of X70 and X80 Pipe Steels [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9328</td>
<td>Alternative Acceptance Criteria of Girth Weld Defects [Team Leader - unavailable]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9514</td>
<td>Interaction of Multiple Through-Thickness Defects Under Plastic Collapse Conditions (Part I) [Team Leader - Horsley]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9514</td>
<td>Interaction of Multiple Surface Breaking Notches Under Plastic Collapse Conditions (Part II) [Team Leader - Horsley]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9635</td>
<td>Effects of Welding on HAZ Softening of X70 / X80 TMCP Linepipe Steels [Team Leader - Horsley]</td>
<td></td>
</tr>
<tr>
<td>PR-202-9732</td>
<td>The Effect of Weld Metal Yield Strength Matching & Defect on Pipeline Reliability and Structural Integrity of Girth Welds in X70 Pipe [Team Leader - Horsley]</td>
<td></td>
</tr>
<tr>
<td>PR-206-013</td>
<td>Welding on Fluid Filled Pressurized Pipelines: Transient 3D Analysis of Temperature, Microstructure, Stress, and Strain [Team Leader - Dorling]</td>
<td></td>
</tr>
<tr>
<td>PR-214-9852</td>
<td>Altro ASPE 1002 Specifying Acceptance/Rejection Criteria To Avoid Repeat Weld Failures in API 370 Pressure Vessel Construction [Team Leader - Rothwell]</td>
<td></td>
</tr>
</tbody>
</table>
Watch this Space

As requests for higher pressure operation continue to be filed and considered, the requirements are evolving.

The requirements continue to be founded in collaboratively developed technology.