Technologies Supporting Higher Stress Level Operation

David Johnson

Background - 1

- Traditionally, pipeline operation in U.S. limited to 72% of SMYS
 - Typical mill test to 90% SMYS
 - Operate at 80% of test
- Provided lots of margin for tolerances in
 - Dimensions
 - Properties
 - Processes

Background - 2

- Why increase to 80%?
 - Consistent with other codes
 - Several "grandfathered" lines there now
 - Operating pressure / stress level Not a primary driver for risk
- Manage active integrity threats
 - Materials
 - Construction
 - Corrosion
 - Operations

- Excavation
- Outside force
- Equipment

Background - 3

- Increased utilization of existing infrastructure (300k miles)
 - Public impacts
 - Construction impacts
 - Environmental impacts
 - Land utilization
 - Resource utilization
- Where to look?
 - Over 50 years of R&D

Key Areas

- Pipe Design
 - Fracture Control Plan
 - Carbon Equivalents
- Coatings
- Weld Inspection
- Pressure Testing
- ILI & DA
- Threat Assessments
- Repairs

Pipe fracture control plan

Defect tolerance – stable, leak, rupture
Dynamic behavior – propagate/arrest

Carbon equivalents & hardness

Hardenability
Cracking potential

Pipe coatings

Application & testing

Effectiveness

- Weld inspection
 - X-ray & UT
 - Defect limits
 - Workmanship vs. ECA Criteria

Pressure testing

Technical understanding
Engineered tests

Corrosion Control

ILI
DA - EC & IC
- CP

- Threat Assessments Identify & Manage
 - Materials
 - Construction
 - Corrosion
 - Operations

- Excavation
- Outside force
- Equipment
- Repairs (Pipeline Repair Manuals)
 - Materials
 - Techniques

Technology Publications (too numerous to list)

- PRCI <u>http://www.prci.org/publications</u>
- GTI

http://www.gastechnology.org

 PHMSA <u>http://primis.phmsa.dot.gov/rd</u>

Partial Project Listing – PRCI (One representative page of 27 total)

<u>PR-186-9706</u>	Effects of Pressure Fluctuations on Near-Neutral SCC Propagation [Team Leader - Torgunrud]
<u>PR-186-9709</u>	Integrity and Remaining Life of Line Pipe with Stress Corrosion Cracking [Team Leader - unavailable]
<u>PR-187-821</u>	Pulsed Gas Metal Arc Welding of API 5LX-80 Pipe [Team Leader - unavailable]
<u>PR-187-9212</u>	Centerline Segregation in Plate and Strip for Linepipe Produced from Continuously Cast Slabs [Team Leader - unavailable]
<u>PR-187-9602</u>	Tensile Property Variation in DSAW and ERW Line Pipe [Team Leader - unavailable]
<u>PR-194-719</u>	Energy Based Pipe-Sol Interaction Models [Team Leader - unavailable]
<u>PR-194-719</u>	Pipe-Soil Interaction Tests on Sand and Soft Clay [Team Leader - unavailable]
<u>PR-193-809</u>	Development of an Ultrasonic Vehicle for the Detection of Stress Corrosion Cracking In Buried Gaz Pipelines [Team Leader - unavailable]
<u>PR-198-9108</u>	Development of Inspection Vehicle to Detect SCC in Natural Gas Lines [Team Leader - unavailable]
PR-201-9707	
<u>PR-202-009</u>	Fracture Behavior of Girth Welds Containing Natural Defects, Comparison with Existing Workmanship Standards [Team Leader - unavailable]
<u>PR-202-010</u>	Effect of Defect Size and Yield to Tensile Ratio on Plastic Deformation Capacity Pipeline Steps [Team Leader - unavailable]

PR-202-011	Fracture Behavior of Large Diameter Pipeline Girth Welds: Effect of Weld Metal Yield Strength - Part 1 [Team Leader - unavailable]
<u>PR-202-011</u>	Fracture Behavior of Large-Diamater Pipeline Sinh Welds: Effect of Weld Metal Yield Strength and Defect Interaction. Part II [Team Leader - unavailable]
<u>PR-202-922</u>	Effect of Weld Metal Matching on Girth Weld Performance, Volume II: Experimental Investigation [Team Leader - unavailable]
PR-202-922	Effect of Weld Metal Matching on Girth Weld Performance, Volume III: An Engineering Critical Assessment (ECA) Analysis [Team Leader - unavailable]
<u>PR-202-922</u>	Effect of Weld Metal Matching on Girth Weld Performance Vol. I [Team Leader - unavailable]
PR-202-9326	Weld Metal Yield Strength Testing of Girth Welds [Team Leader - unavailable]
<u>PR-202-9327</u>	Effect of Defect Size and YS/TS Ratio on the Plastic Deformation Capacity of X70 and X80 Pipe Steels [Team Leader - unavailable]
PR-202-9328	Alternative Acceptance Criteria of Girth Weld Defects, [Team Leader - unavailable]
<u>PR-202-9514</u>	Interaction of Multiple Through-Thickness Defects under Plastic Collapse Conditions (Part I) [Team Leader - Horsley]
PR-202.9514	
<u>PR-202-9635</u>	Effects of Welding on HAZ Softening of X70 / X80 TMCP Linepipe Steels [Team Leader - Horsley]
<u>PR-202-9732</u>	
<u>PR-206-013</u>	Welding on Fluid Filled Pressurized Pipelines: Transient 3D Analysis of Temperature, Microstructure, Stress, and Strain [Team Leader - Dorling]
<u>PR-214-9802</u>	Interim Approach to Determine Crack Arrest Toughness to Avoid Dynamic Ductile Fracture in Gas Transmission Pipelines [Team Leader - Rothwell]

Watch this Space

As requests for higher pressure operation continue to be filed and considered, the requirements are evolving.

The requirements continue to be founded in collaboratively developed technology.