LEADING PIPELINE RESEARCH

Government/Industry Pipeline R&D Forum

New Orleans, 7-8 February 2007

Defect detection and characterization – PRCI activities

David Batte Consultant to PRCI

Pipeline Research Council International, Inc. • www.prci.org

DOT-reported incidents, 2002-2005

	Gas pipelines		Liquids pipelines	
	Incidents	Fatalities	Incidents	Fatalities
Operator excavation	10	0	17	0
Third party damage	67	3	57	5
All mechanical damage	77	3	74	5
Internal corrosion	65	0	54	0
External corrosion	42	0	82	0
SCC	7	0	5	0
All corrosion	114	0	141	0

Source: Smith, Mechanical Damage Workshop, March 2006

Not the whole picture: excludes non-penetrating defects!

PRCI aims – damage management

 Providing operators with improved tools and procedures to address damage that threatens pipeline integrity

Assessment

- Locate
- Characterize and discriminate
- Determine size and shape
- Assess structural significance, severity
- Determine safe, timely and proportionate response
- Prevention, Mitigation

Assessment of Integrity threats

In-service threats

- External Corrosion
- Internal Corrosion
- SCC
- Mechanical Damage

Construction threats

• Fabrication and construction defects \$850k

PRCI has developed Technology Roadmaps to address each of these threats and deliver improved management tools – based on members' needs and priorities

\$800k \$200k \$500k \$550k

Corrosion – critical issues

Detect	ILI reproducibility and accuracy; resolution, POD
	Identifying high-susceptibility IC locations
Characterize	General or local corrosion, MIC
	Secondary features; SCC
Structural significance	Site-dependent growth models
	Coherent suite of assessment methods
Repair	-
Damage management	Methodologies based on ILI, DA
	Re-inspection intervals optimization

Corrosion – ongoing activities

External corrosion

- Accurate growth rate determination; measurement of growth from successive ILI runs, comparison of ILI tool performance
- In-ditch tools; corrosion mapping, location and characterization in difficult-to-inspect areas
- Improved structural significance assessment
 – influence of cyclic and biaxial loading, low toughness and high strength (part PHMSA cofunded)
- Establishing re-inspection intervals using reliability-based methods

Internal corrosion

- Tools to identify corrosion-susceptible locations and measure wall loss
- Development and demonstration of threat assessment guidelines

SCC – critical issues

Detect	ILI reliability and accuracy, POD
	DA site selection
Characterize	Consistency of field diagnosis
	Depth, length measurement
Structural significance	Crack growth models
	Severity assessment, failure life
Repair	-
Damage management	Methodologies based on hydrotest,
	ILI, DA
	Re-inspection intervals

SCC – Ongoing Activities

Site identification

- Guidelines for identifying SCC
- SCC in areas of local deformation, dents
- SCC in ethanol pipelines

Characterization

- ILI to detect identify and size SCC in gas and liquids lines
- Field diagnosis and crack size measurement
- External surface crack mapping
- Capabilities of guided wave ultrasonics for axial cracks

Assessment

- SCC growth, dormancy, re-initiation and coalescence
- SCC acceptance criteria
- Guidelines for estimating re-assessment intervals after hydrotest, ILI, and DA

Mechanical damage – critical issues

Detect	ILI capabilities; resolution, POD, current and next- generation tools.
Characterize	Damage dimensions and characterizing parameters. Plain dent discrimination
Structural significance	Screening models for ranking damage severity. Influence of secondary features
	Mechanics-based models for burst, delayed failure.
	Coherent suite of assessment methods
Repair	Pressure reductions for safe working
	Repair of less-severe damage (grinding)
Damage management	Methodologies for damage found by ILI, excavation
	Guidance, codes & regulations

Mechanical damage – Ongoing activities

Detection and discrimination (part PHMSA co-funded)

- Evaluation of dual field and circumferential MFL, non-linear harmonics, UT
- Differentiating the 3D magnetic signals from local deformation and stress
- Performance characteristics of current ILI technologies

Assessment

- Ranking and screening of damage severity, life
- Improved models for predicting burst, delayed failure
- Mechanical damage at welds (PHMSA co-funded)
- Behavior of dents with corrosion
- Behavior of dent + gouge damage
- Safe procedures for excavation and repair

Management

• Improved industry guidance

Weld defects – critical issues

Detect	AUT accuracy; size and location, POD
	Difficult-to-inspect locations
Characterize	Benign or active defects?
Structural significance	Strain-based assessment methods
Repair	-
Damage management	Improved industry guidance for construction defect acceptance

Weld defects – Ongoing activities

Assessment

- Factors affecting the properties of welds and HAZs
- Fracture initiation criteria for high strength line pipe
- Critical assessment of pipeline girth welds
- Strain-based design: stress concentration at welds
- Interaction of multiple defects under plastic collapse
- Effects of constraint on fracture and plastic collapse

Management

- Criteria for evaluating failure susceptibility due to crack defects
- Update on the evaluation of pipeline weld defects (API 1104)
- Integration of multi-scale mechanics in weld integrity assessment (PHMSA co-funded)

Remaining gaps and priorities

- Mechanical damage
- Corrosion
- Mechanical damage associated with corrosion, SCC, welds
- Stress Corrosion Cracking

High priority needs – a viewpoint

Mechanical damage

- Better inspection technology, to discriminate the key features determining structural significance
- Better assessment tools, especially to enable initial screening and severity ranking

How do we discriminate between plain dents and dents with corrosion, cracking?

What effect do small secondary features (corrosion, surface cracks) have on failure pressure, life, of gas and liquids lines?

Required outcome: Better regulations aligned with the improved inspection, discrimination and assessment capability, for safe, timely and proportionate responses when damage is discovered

High priority needs – a viewpoint

Corrosion

• Better understanding of pit growth rates in service

Measured and estimated rates from service vary between 1mil/year and 15mil/year (0.05-0.4 mm/y). MIC rates as high as 65 mil/year (1.6 mm/y) have been seen

Much laboratory data relates to free corrosion, not relevant to CP-protected pipe

Incubation times may vary widely. Correlations with soil type are uncertain. Dry summers reduce growth rates. Operating conditions change over the years. Each line/segment has its own growth rate.

Required outcomes: Ability to focus on high-risk locations, Safe and timely re-inspection intervals

High priority needs – a viewpoint

Stress Corrosion Cracking

• Better understanding of crack growth rates in service

When does it start? Is the rate constant?

Measured and estimated rates from service have varied between 2mil/year and 60mil/year (0.05-1.5 mm/y).

Recent data from repeat hydrotests, ILI, suggest 10-15 mil/year (0.25-0.4 mm/y) may be a more relevant upper bound for many lines in service

Operating conditions change over the years. History is doubtful for older pipelines

Incubation times may vary widely. Correlations with soil type are uncertain. Each line/segment has its own growth rate.

Required outcomes: Ability to focus on high-risk locations,

Safe and timely re-inspection intervals

Thank you