gti

ENHANCING THE SAFETY AND RELIABILITY OF PLASTIC GAS DISTRIBUTION PIPELINES: DEFECT REMEDIATION, REPAIR AND MITIGATION

> Presented at Government/Industry Pipeline R&D Forum New Orleans, LA February 7,2007

Presented by Michael M. Mamoun Senior Institute Scientist Gas Technology Institute (GTI)

GTI Technology Development, Testing and Evaluation

- Development and Testing of pipes, materials, fittings, tools and equipment
 - Plastic and metal piping systems
 - Pipe and leak location sensors and equipment
 - Pipe installation and maintenance tools
 - Trenchless technologies-Directional Boring Equipment

GTI State-of-the Art Laboratory for Plastic and Metal failure analysis

» Optical and Microscopic Examinations

Scanning Electron Microscopy (SEM) for material examinations up to 200,000X

GTI Machine Shops and Field Test Facility

» Large-scale and field test facility

- Accelerated testing of long-term performance
- Full size components / fitness-for-purpose/ Prototype manufacturing
- Corrosion testing and mitigation

Make-Up of the U.S. Gas Distribution Pipeline Network

- In 2006, the U.S. Gas Distribution Pipeline Network Consisted of About
 - > 1,450,000 Miles of Mains
 - > 900,000 miles of steel, Cl, etc. mains
 - > 550,000 miles of plastic mains
 - > 750,000 Miles of Services (About 60,000,000 Services)
 - > 40,000,000 plastic services
 - > 20,000,000 services other materials

Distribution Miles of Main by Material

gti

Number of Services by Material

U.S. Gas Distribution Pipeline Construction Activity

In 2006, the U.S. Gas Distribution Industry Installed

28,500 Miles of Mains

- 13,500 miles of new mains
- 15,000 miles of replacement mains
- 30,000 Miles of Services (70-ft service length)
 - 12,500 miles of new services
 - 17,500 miles of replacement services

U.S. Gas Distribution Pipeline Construction Activity

- Currently, About 95% of All NEW and Replacement Mains & Services Installed are Plastic Polyethylene (PE) Pipe Materials
- » U.S. gas distribution industry began using plastic pipes for services and mains in the late 1960's

U.S. Gas Distribution Industry Expenditures in 2006

- In 2006, the U.S. Gas Distribution Industry Expenditures consisted of About:
 - \$4 Billion for New Construction to Extend Mains & Services to New Customers
 - \$5 Billion for Operations and Maintenance Including Pipe Rehabilitation, Repair and Replacement of Existing Distribution Systems

In-Service Normalized Failure/Leak Rates in Non-Plastic (Steel, Cl, etc) VS Plastic Distribution Pipelines <u>Excluding Third-Party Damage**</u>

 376,000 Approximate Total Number of Leaks In <u>Non-Plastic Mains</u> (coated and bare steel, Cl, etc.) <u>Non-plastic main leaks</u> <u>8 times > plastic</u> 172,000 Approximate Total Number of Leaks In <u>Non-Plastic Services</u> <u>Non-plastic Service</u> <u>leaks 4 times > plastic</u> 		Coate d Steel Mains	Total Non- Plastic Mains	Plastic
	Leaks /Mile of Main /Yr	0.1748	0.4177	0.0564
	Leaks /Service/ Yr	0.0034	0.0086	0.0025

In-Service Failures in Plastic Distribution Pipelines Including Third-Party Damage

According to Surveys and Reports 290,000 <u>Total</u> Number of Plastic Pipe Main & Service Leaks Per Year <u>Including Third- Party</u> damage

70,000 Plastic Mains Leaks/Yr (includes third-party)

- 220,000 Plastic Services Leaks/Yr (includes third-party)
 - 0.12563 leaks/ mile / year Plastic Main Leak Index --Includes Third-Party Damage
 - 0.005505 leaks/service/year Plastic Service Leak Index --<u>Includes Third-Party Damage</u>.

Third-Party Plastic Pipe Failures

- 55% of All Plastic Pipe Field Failures/Leaks Are Caused by Third-Party Damage, i.e.
 - 160,000 Total Third-Party Plastic Pipe Main and Service Leaks/Yr
 - 38,000 Third-Party Plastic Main Leaks/yr
 - 122,000 Third-Party Plastic Services Leaks/yr

gti

Plastic Distribution Pipelines In-Service Failures -cont'd

> 45% Other Plastic Pipe Failures

130,000 Other Plastic Pipe Main and Service Leaks/Yr

- 31,000 Plastic Main Leaks/yr
- 99,000 Plastic Services Leaks/yr

Due to Fusion Joining, Squeeze-Off, Rock Impingement, Pipe Bending, Earth Loading and Settlement, Pipe Defects/ Manufacturing, etc

Type & Relative Frequency of Plastic Gas Pipe Failures

Type of Failure	Frequency of Failure	Relative Rank /Risk Index by Failure Type
Saddle Fusion Joints	119	10
Socket Fusion Joints	69	9
Butt Fusion Joints	23	8
Tees and Ells Joints	20	7
Material: Quality Control, Inclusions, and Other Defects (<u>pin holes</u>)	15 (>100)	6 (10)
End Caps and Tapping Tee Caps	11	5
Rock Impingement	6	4
Bending and Earth Settlement	6	4
Squeeze-off	5	3
Plow-in, Insert Renewal, installation-related	2	2
Internal Pressure	1	1

gti

Schematic Illustration Depicting Type and Approximate

Relative Ranking of Plastic Pipe Field Failures/Leaks

Heat Fused Lateral Joint Failure

Electro-fusion Saddle Joint Failure

gti

Electrofusion Lateral Joint Failure

gti

Squeeze-off Failure

Slit failure In Pipe Due to an Inclusion

gti

Rock Impingement Failure

Rock Impingement Failure

Pipe Bending Circumferential Slit Failure

gti.

Probable Cause of Plastic Pipe Failures

Type of Failure	Probable Root Cause
Saddle/Lateral Fusion Joints	Inadequate fusionlack of bond or penetration,
	Contaminants, Inclusions, Stress Concentrations
Socket Fusion Joints	Inadequate fusionlack of bond or penetration,
	Contaminants, Extrusion lines,
Butt Fusion Joints	Inadequate fusionlack of bond or penetration,
	Wall-to-wall mismatch, Contaminants, Inclusions,
Material: Quality Control (Pin Holes)	Defects, Inclusions, Cavities, Extrusion Lines, Non- Homogenous Melting (High % of Re-Grind)
Rock Impingement	High Localized Stress Concentration Combined
	with Defects, Inclusions,
Bending and Earth Settlement	High Bending Stresses
Squeeze-off	High Localized Stresses Due to High % Squeeze

Method of Repairing Plastic Gas Pipes

Currently, Repair of a Leaky/Damaged PE Gas Pipe Involves

Pipe Squeeze-off at Three Locations to Stop Gas Flow

- Squeeze at damaged/leaky site, and
- Squeeze up-and down-stream from leak

Cutting out the Damaged/Leaky Section,

Replacing Damaged Section with a Short Pipe Section, and

Joining Short Pipe Section to Host Pipeline Using

- > Electro-fusion couplings,
- > Butt-fusion Joining, or
- Mechanical Repair Coupling

Mitigating Plastic Pipe Failures

» Need to Identify, Address and Eliminate Root Causes

- Improve Fusion Procedures and Field Training
- Enhance Design of Saddle / Lateral Fusion Joints
- Improve Pipe Quality Control
- Develop Inspection Sensors to identify root-cause defects
- Improve Pipe Installation and Operational Procedures for Squeeze-Off, Pipe Bending, Bedding and Back-fill Materials
- Develop innovative non-intrusive gas shut-off techniques
- Develop Enhanced Electrostatic discharge techniques
- Develop Accurate Pipe Locating and Tracing Techniques
- Develop Sensors to Detect in Real-Time Impact loads
- » Develop Inexpensive Pipe Repair Methods
- » Assess/Rank Plastic Pipe Failures, Risks, and Threats

gti