EWi
THE MATERIALS JOINING EXPERTS
Advanced Welding Repair and Remediation Methods for In-Service Pipelines

Bill Bruce
Technology Leader | Pipeline Services
Edison Welding Institute

614.688.5059
bill_bruce@ewi.org

DOT OPS Advanced Welding and Joining Technical Workshop
January 25-26, 2006
Outline

- Basics of welding repair and remediation for in-service pipelines
- DOT/PRCI project “Advanced Welding Repair and Remediation Methods for In-Service Pipelines”
- Technological needs for in-service welding
Introduction

- In-service maintenance and repair continues to be an area in which there is much interest
- Repair of corrosion damage
 - As pipelines become older, more repairs are required
 - “Rust Never Sleeps” - Neil Young
- Installations of hot-tap branch connections
 - More branch connections required as the result of open access and common carrier practices
 - “On and off ramps for the energy highway”
- Economic and environmental incentives
Pipeline Repair and Maintenance

- Full-encirclement repair sleeves
 - Type A - For reinforcement only
 • Can have non-welded ends, but ends are often welded to prevent further corrosion
 - Type B - Capable of containing pressure
 • Must have welded ends
- “Hot-tap” branch connections
 - Connect alternative supply or additional customer
- Welding performed “in-service”
In-Service Welding Concerns

- Repair crew safety
 - Avoiding “burnthrough” or “blowout”
- Resulting integrity of the pipeline
 - Avoiding hydrogen cracking
Avoiding Burnthrough

- Avoid excessively high heat input (i.e., excessively slow travel speed) when welding onto thin-wall, low flow rate pipelines.
- Burnthrough risk is extremely remote if wall thickness is 0.25 in. (6.4 mm) or greater, provided that low-hydrogen electrodes and normal welding practice is used.
- For a given heat input level, the use of smaller diameter electrodes (lower current levels) is safer.
Project Work Pertaining to Burnthrough

- Improved burnthrough prediction methods
- Burnthrough limits for thin-wall applications
- Effect of pressure
Avoiding Hydrogen Cracking

- Eliminate, or reduce below a threshold level, at least one of the conditions necessary for its occurrence
 - Limit hydrogen in the weld by proper use of low-hydrogen electrodes
 - Develop and use procedures that limit the formation of crack-susceptible microstructure
 - Limit stress acting on the weld
Welding Procedure Options

- **Heat input control procedures**
 - Sufficiently high to overcome ability of flowing contents to remove heat from pipe wall
 - May represent a burnthrough risk if pipe wall is thin

- **Temper bead procedures**
 - Rely on heat from subsequent passes to temper and refine HAZ of previous passes

- **Preheat**
 - Slow weld cooling rate somewhat
 - Allow hydrogen diffusion following welding
Project Work Pertaining to Hydrogen Cracking

- Predicting required welding parameters
 - Thermal analysis computer modeling
 - Heat-sink capacity measurement
- Procedure qualification methods
- Qualification and selection of procedures (GSP)
- Alternative process
- Application of preheating
- Factors that affect hydrogen levels
- HAZ hardness limits/metallurgical factors
Other Pipeline Repair Methods

- Weld deposition repair
- Epoxy-filled shells
- Composite repairs
 - Glass/carbon fiber
 - Dry/wet lay-up
Advanced Welding Repair and Remediation Methods

- Current DOT/PRCI funded project
- Incentives
 - For large diameter pipelines, manual welding is time-consuming
 - Greater risk of operator error
 - For higher strength pipelines, precise weld bead placement may be required to ensure effective tempering by subsequent passes
Advanced Welding Repair and Remediation Methods

- **Major objectives**
 - Develop an automated in-service welding system
 - Implement real-time adaptive control system
 - Evaluate system performance through laboratory trials
 - Validate the system by qualifying procedures and performing field trials
Design and Build
Automated Welding System

- Mechanized sleeve welding
 - Longitudinal groove welds
 - Circumferential fillet welds
- Mechanized weld deposition repair
Real-Time Adaptive Control

- Mechanized sleeve welding
 - Locate weld joint
 - Identify gaps
 - Track weld joint/previous weld bead
 - Automatically adjusts welding parameters in real time to ensure effective joint filling

- Mechanized weld deposition repair
 - Map corrosion damage
 - Determine bead placement for effective filling
 - Track previous weld bead
 - Automatically adjusts welding parameters
Laboratory Development and Evaluation

- **System trials**
- **Weldability trials**
 - X80, 0.75-in. WT
 - X100, 0.75-in. WT
 - TransCanada/BP
 - X120, 0.85-in. WT
 - Exxon
 - Simulated in-service conditions
 - GMAW
 - FCAW
Technological Needs for In-Service Welding

- Advanced applications
 - Weldability issues
 - Design issues
 - Weld metal strength

- General applications
 - Pre-weld planning
 - Industry standards considerations
 - In-the-ditch application

- Others to be identified and prioritized by working group
Pipeline Repair and Remediation Summary

- Pipelines are and will continue to be vital arteries for energy flow.
- In-service repair and remediation continues to be an area in which there is much interest.
- Concerns when welding onto in-service pipelines.
- Techniques available to address many of these concerns.
- Some concerns remain and require further effort to resolve.
The Need for Repair and Remediation Technology?
The Need for Repair and Remediation Technology?