Test Results for the Field Aged & Mechanically Aged Composite Liner System

Starline[©] 2000

Ву

Xia Zeng and Anil N. Netravali

Cornell University

August 20, 2015

Tested Samples

6 in. CI Pipe

- ✓ Field Aged for 16 yrs
- ✓ Field Aged for 16 yrs + Mechanically Aged at Cornell No. 1
- ✓ Field Aged for 16 yrs + Mechanically Aged at Cornell No. 2

12 in. CI Pipe

- ✓ Field Aged for 10 yrs
- ✓ Field Aged for 10 yrs + Mechanically Aged at Cornell No. 1
- ✓ Field Aged for 10 yrs + Mechanically Aged at Cornell No. 2

Image of a Typical Composite Liner

Longitudinal Direction

Thread Count: 21.03 per inch for 6" pipe 16.31 per inch for 12" pipe

Transverse (Hoop) Thread Count: 15.96 per inch for 6" pipe 16.68 per inch for 12" pipe

Composite Liner Components Polyester (PET) Fabric - Strength component

Tough Polyurethane (PU) Membrane

- Impervious component

Tests Conducted (For Residual Properties)

Composite Liner

Tension Tests (Impregnated Liner, Bonded, at the pipe) Longitudinal (ASTM D 3039) Transverse (ASTM D 3039)

Tension Tests (Impregnated Liner, De-bonded, at the joint) Longitudinal (ASTM D 3039) Transverse (ASTM D 3039)

Composite Liner Adhesion to CI pipe

Lap Shear	(ASTM D 3164)
Peel	(ASTM D 1876)

Typical 6-in. CI Pipe and Joint with Composite Liner

Composite Liner Tension Test in Longitudinal Direction

(Impregnated Composite Liner – 6 in. CI Pipe)

Test parameters*

Gauge Length (mm)	Crosshead Speed (mm/min)	Width (mm)	Thickness (mm)	Length (mm)
60	20	15	~1.25	200

*Same parameters were used in 2002-2003 tests on Starline[®] 2000 Composite Liner

Composite Liner Tension Test Longitudinal Direction

(Impregnated Composite Liner – 6 in. CI Pipe)

FA = Field aged for 16 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Composite Liner Tension Test in Longitudinal Direction

(Not debonded Composite Liner FA and De-Bonded FMA – 6 in. CI Pipe comparison)

	Average 6 in. Pipe (FA)	Average 6 in. Pipe (FMA) De-Bonded No. 1	Average 6 in. Pipe (FMA) De-Bonded No. 2
ksi	19.03	19.94	18.33
CV %	7.44	5.46	5.59

No change is seen after mechanical aging at Cornell University

Composite Liner Tension Test in Longitudinal Direction

(Impregnated Composite Liner – 6 in. CI Pipe)

FA = Field aged for 16 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Composite Liner Tension Test Longitudinal Direction

(Impregnated Composite Liner FA and Bonded-FMA – 6 in. CI Pipe comparison)

Negligible change is seen after mechanical aging at Cornell University

(Impregnated Composite Liner - 6 in. CI Pipe)

FA = Field aged for 16 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

(Impregnated Composite Liner FA and Bonded FMA – 6 in. CI Pipe comparison)

	Average 6 in. Pipe (FA)	Average 6 in. Pipe (FMA) Bonded No. 1	Average 6 in. Pipe (FMA) Bonded No. 2
ksi	3.59	3.33	3.55
%CV	4.74	3.75	3.72

Negligible change is seen after mechanical aging at Cornell University

(Impregnated Composite Liner – 6 in. CI Pipe)

FA = Field aged for 16 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

(Impregnated Composite Liner FA and De-Bonded FMA – 6 in. CI Pipe comparison)

	Average 6 in. Pipe (FA)	Average 6 in. Pipe (FMA) De-Bonded No. 1	Average 6 in. Pipe (FMA) De-Bonded No. 2
ksi	3.59	3.48	3.33
CV %	4.74	4.11	3.66

Very small change is seen after mechanical aging at Cornell University

Lap Shear Test (Impregnated Composite Liner- 6 in. CI Pipe)

Primary Test for Adhesion

Length	Crosshead Speed (mm/min)	Width (mm)		Length (mm)	-
80	10	25.4	~1.25	152.4	8

Typical CI Pipe with Mechanical Joint Section with Composite Liner

Lap Shear Test (Impregnated Composite Liner – 6 in. CI Pipe) (Individual Results)

FA = Field aged for 16 yrs

MA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Lap Shear Test

(Impregnated Composite Liner FA and Bonded FMA – 6 in. CI Pipe comparison)

No change is seen after mechanical aging at Cornell University

(Impregnated Composite Liner- 6 in. CI Pipe)

Secondary Test for Adhesion

Test parameters

Gauge Length (mm)	Crosshead Speed (mm/min)	Width (mm)	Thickness (mm)	Length (mm)
260	150	25.4	~ 1.25	300

(Impregnated Composite Liner FA and Bonded FMA – 6 in. CI Pipe comparison)

	Control	48 weeks	Average 6 in. Pipe (FA)	Average 6 in. Pipe (FMA) Bonded No. 1	Average 6 in. Pipe (FMA) Bonded No. 2
ksi	8	9.7	8.72	8.06	5.83
%CV	7.6	9.9	12.96	21.01	30.08

Small change is seen after mechanical aging at Cornell University - Large inherent variation

TENSILE STRENGTH

Are the longitudinal and hoop (bonded) tensile strengths from field aged specimens comparable to those of field & mechanically aged (bonded & de-bonded) specimens?

	6 in. Pipe
Longitudinal Tension	YES
Hoop Tension	YES

Conclusion: Liner tensile strength is not affected by 100 years mechanical aging for 6-in. pipe specimens.

LAP SHEAR AND PEEL STRENGTH

Are lap shear and peel strengths from field/mechanically aged specimens comparable to unaged specimens?

	6 in. Pipe
Lap Shear	YES
Peel Test	YES

Conclusion: No evidence of significant reduction in lap shear or peel strength due to chemical and mechanical aging

Composite Liner Tension Test Longitudinal Direction

(Impregnated Composite Liner – 12 in. CI Pipe)

FA = Field aged for 11 yrs

MA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Composite Liner Tension Test in Longitudinal Direction

(Impregnated Composite Liner FA and De-Bonded FMA – 12 in. CI Pipe comparison)

	Average 12 in. Pipe (FA)	Average 12 in. Pipe (FMA) De-Bonded No. 1	Average 12 in. Pipe (FMA) De-Bonded No. 2
ksi	11.67	11.55	11.71
%CV	7.82	6.45	7.84

No change is seen after mechanical aging at Cornell University

Composite Liner Tension Test in Longitudinal Direction

(Impregnated Composite Liner - 12 in. CI Pipe)

FA = Field aged for 11 yrs

MA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Composite Liner Tension Test Longitudinal Direction

(Impregnated Composite Liner FA and Bonded-FMA – 12 in. CI Pipe comparison)

	Average 12 in. Pipe (FA)	Average 12 in. Pipe (FMA) Bonded No. 1	Average 12 in. Pipe (FMA) Bonded No. 2
ksi	11.67	12.64	12.02
%CV	7.82	1.86	9.19

No change is seen after mechanical aging at Cornell University

Composite Liner Tension Test in Longitudinal Direction for Partially Damaged Section

(Impregnated Composite Liner – 12 in. CI Pipe)

Front side of the liner

North

Composite Liner Tension Test in Longitudinal Direction for Partially Damaged Section

(Impregnated Composite Liner – 12 in. CI Pipe)

*Plots indicate the properties of the PU membrane

(Impregnated Composite Liner – 12 in. CI Pipe)

FA = Field aged for 11 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

(Impregnated Composite Liner FA and Bonded FMA – 12 in. CI Pipe comparison)

	Average 12 in. Pipe (FA)	Average 12 in. Pipe (FMA) Bonded No. 1	Average 12 in. Pipe (FMA) Bonded No. 2	
ksi	5.92	6.47	6.56	
%CV	6	5.63	4.3	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

No change is seen after mechanical aging at Cornell University

FMA

Avrg

No. 2

FMA

Avrg

No. 1

CORNELL CIPL Project Workshop

FA

Avrg

0

(Impregnated Composite Liner – 12 in. CI Pipe)

FA = Field aged for 11 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

(Impregnated Composite Liner FA and De-Bonded FMA – 12 in. CI Pipe comparison)

	Average 12 in. Pipe (FA)		Average 12 in. Pipe (FMA) De-Bonded No. 2
ksi	5.92	6.78	6.39
CV %	6	6.14	6

No change is seen after mechanical aging at Cornell University

Lap Shear Test (Impregnated Composite Liner – 12 in. CI Pipe) (Individual Results)

FA = Field aged for 11 yrs

FMA = Mechanically aged @ Cornell (equivalent to 100 yrs of traffic and 100 yrs of thermal cycling)

Lap Shear Test

(Impregnated Composite Liner FA and Bonded FMA – 12 in. CI Pipe comparison)

	Control	16 weeks	–	Average 12 in. Pipe (FMA) Bonded No. 1	Average 12 in. Pipe (FMA) Bonded No. 2
ksi	1.1	1.6	1.27	1.18	1.49
%CV	13.2	10.1	4.46	20.82	7.4

No change is seen after mechanical aging at Cornell University

U

N

v

ERS

т

(Impregnated Composite Liner FA and Bonded FMA – 12 in. CI Pipe comparison)

	Control	16 weeks	•	Average 12 in. Pipe (FMA) Bonded No. 1	Average 12 in. Pipe (FMA) Bonded No. 2
ksi	8	8.6	4.66	3.9	1.56
%CV	7.6	10	31.61	29.48	25.88

Small change is seen after mechanical aging at Cornell University

- Large inherent variation

TENSILE STRENGTH

Are the longitudinal and hoop (bonded) tensile strengths from field aged specimens comparable to those of field & mechanically aged (bonded & de-bonded) specimens?

	6 in. Pipe	12 in. Pipe (Global)	12 in. Pipe (Local)
Longitudinal Tension	YES	YES	NO
Hoop Tension	YES	YES	NO

Conclusion: Liner tensile strength is not affected by 100 years mechanical aging for 6-in. pipe specimens. Local strength reduction for 12-in. pipe specimens.

LAP SHEAR AND PEEL STRENGTH

Are lap shear and peel strengths from field/mechanically aged specimens comparable to unaged specimens?

	6 in. Pipe	12 in. Pipe
Lap Shear	YES	YES
Peel Test	YES	Not Comparable

Conclusion: No evidence of significant reduction in lap shear or peel strength due to chemical and mechanical aging

NYSEARCH

A single composite liner bonded to just 1" around the circumference of 6 in. pipe could lift a three 10,000 lb elephants without de-bonding

GAS ASSO

TENSILE STRENGTH

Are the longitudinal and hoop (bonded) tensile strengths from field aged specimens comparable to those of field & mechanically aged (bonded & de-bonded) specimens?

	6 in. Pipe	12 in. Pipe
Longitudinal Tension	YES	NO
Hoop Tension	YES	NO

Conclusion: Liner tensile strength is not affected by 100 years mechanical aging for 6-in. pipe specimens. Local strength reduction for 12-in. pipe specimens.