Project Report: Active Pipeline Encroachment Detector
(Phase I)

Jim Ji, PhD, Electrical Engineering Department, Texas A&M University
Andrew K. Chan, PhD, Electrical Engineering Department, Texas A&M University

Leslie E. Olson, National Pipeline Safety and Operations Center, Texas Transportation
Institute

1. Introduction

Of the many pipeline accident causes that occur to oil and gas pipelines, approximately
40% of are caused by third-party excavating activities into the buried pipeline right of
way (ROW). According to DOT statistics, excavation damage is the second leading
cause of accidents for hazardous liquid pipelines, after corrosion. In particular, the
potential for mechanical damage to be inflicted to pipelines located in or near urban
expansion areas has become a major concern for the pipeline owner/operators and
government regulators charged with the safety of the community (1,2). Existing
encroachment detecting systems such as the ThreatScan acoustic system, aerial
surveillance using automated drones, video cameras and infrared detectors either are
too expensive or cannot work continuously on battery for more than a few days/weeks.

The long-term goal of the project is to develop a low-cost, reliable, long-life, wireless
sensor system to identify and report pipeline encroachment activities in a localized area.
Our short term objective of this project is to study and prove the feasibility of such
system, and identify the technical and economic hurdles/compromises to achieve the
aforementioned long-term goal.

This document describes our preliminary work in the first phase of the project.
Specifically, we will focus on the device, software, and test developed to detect and
differentiate typical encroachment activities (such as digging by backhoe) from common
activities on a construction sites (such as those from trucks and jack hammers). It will
show that the wireless sensor network approach should be viable for detecting right-of-
way (ROW) intrusion by digging equipment, though significant amount of work is
needed to develop a fully functional prototype.

2. Milestones and Timeline

The project was performed in a relative short period, from the end of June to end of
December. During this time, we were able to successfully identify the sensor network

platform and sensor type for the project, and perform initial tests to demonstrate its
feasibility. A conference abstract based on the work was submitted to the International
Pipeline Safety Conference. The table below lists the timeline of “significant” progress in
this initial project phase.

Date Development Issue
Project started -- specified technical - .
6/10/08 requirements and scope of Sensitivity, battery life,
: : and cost
device/equipment needed
6/16/08 Identified and purchased Cost effectiveness and
Sentilla Perk Wireless Sensor Kit programmability
Initial software development and Missing activities due
testing for door closing and opening, to low sensitivity and
7/20/08 :) : : :
i.e., strong vibrations, and reporting restricted software
to the host computer by email access
Purchased and tested various Trossen Not compatible with
7/17/08 :
and radioshack external sensors Tmote
7/30/08 Acquired Sentilla Development
9/15/2008 Submit conference abstract to pipeline See Appendix A

2009 based on the preliminary work

Developed software using the
10/15/08 Sentilla Development Kit to achieve GUI; signal delay
much improved sensitivity

11/11/08- - , Prediction based on
12/11/08 Tested and verified battery life regression
12/10/08- Field tests on construction sites;
1/20/09 data processing and analysis

Report

3. System Architecture

The general approach for this research is to take advantage of the recent advance in
commercially available, low-cost, long-life wireless sensor network for our application.
The remote sensors will be placed at the potentially “dangerous” areas such as
construction sites. The sensors will detect the vibration signals due to heavy machinery,
which are transmitted to a “host” laptop computer to recognize the signal signatures of

digging equipment and report to pipeline operator (see Figure 1). Due to limited time
and resource, we focus on sensor nodes only in this project phase. In addition, our tests
indicate that the on-board accelerometers are sufficient for detecting and differentiating
typical construction equipments.

Sensor Sensor Sensor Sensor
Node 1 Node 2 Node 3 Node N

Senor Node

® 802.15.4 wireless module

* On-board sensors

* Signal processing

* External sensor interface ADC

* On-Board CPU *Host computer
/’ J J \ *802.15.4 wireless card
e h R E— SR P , *Pattern recognition
i Geo- 1 Micro- 11 Light || Acceler |i PIV | «Cell phone interface
. phone | phone ! sensor !| o-meter | !

Figure 1. The architecture of the encroachment monitoring system.

3.1 Hardware

In our testing system, the host computer is a Dell Latitude Laptop. The wireless sensor
nodes are Tmotes that consist of an 8 MHz TI MSP430 microcontroller, which provides
them with sufficient processing power to analyze the data and send the results to the
client computer. They are powered by two 1.5V AA batteries and contain a 250 Kbps
2.4 GHz IEEE 802.15 Chipcon wireless transceiver. The wireless receiver has an indoor
optimal range of 125 meters and a data rate of 250 kbps. Each sensor unit currently
equipped with a 3-axis accelerometer but has interfaces to connect to up to 8 other
sensors. The accelerometer can detect vibration/motion as small as 0.1g acceleration.

Figure 2. The core of the Tmote wireless
sensor node (after the hard plastic shell is
removed). Courtesy: Sentilla

The accelerometer doubles as a vibration sensor for detecting the activities produced by
heavy construction equipments. The unit is enclosed in a hard plastic shell to prevent
damage from erosion. The Tmotes wirelessly transmit data back and forth between
themselves and the host computer, which receive and display the accelerometer signals.

An important feature of the Tmote is that the sensor unit and wireless controller are
normally kept in “sleep” state when there is no activation. This is done automatically
after 30 seconds of loading the program onto the mote. A vibration threshold, defined by
the user and completely adjustable, is preloaded so as to wake them up in 6 ps as soon
as the threshold is reached. With this feature, the unit can be installed and used without
human intervention for a period of up to 6 months. Section 4.1 will show the result of our
battery testing and power consumption analysis.

3.2 Software

The Development Kit contains a Java-based software platform to control and program
the entire mote network, e.g., the motes, the host computer, and their communication.
The Development Kit provides access to the on-board Tmote software and allows
programming the sensing unit through highly flexible interfaces.

e Wireless link or
e USB interface

JAVA is open source, object-oriented software which has a the desired tools for
Graphical User Interface and also serves as a perfect union of modular and object
oriented programming giving us the required flexibility. This is necessary because it is
easily understandable, freely available and most importantly, flexible. In addition,
change in one code or sensor does not affect the working of other sensors.

In our testing system, the necessary parameters, e.g., threshold, power levels,
communication rates on Tmotes are setup through wireless link in the initialization stage.
Then the mote goes to “sleep”/stand-by mode. Once an-overthreshold accelerometer
signal is detected, the mote “wake-up” and transmit the signal to the host computer. As
soon as the host computer receives the data, it is displayed on a graphics user interfact
(GUI). The GUI shows the vibration/acceleration values on all the three axes in different
colors. We will use this GUI plot to depict the kind and level of activity. We emphasis
that in this project phase, only those software functions related sensor detection and
communication are developed and explored. The intelligent signal processing and
pattern recognition for reducing false alarms have not been developed.

Following is a list of major improvements we implemented on the system software.
Appendix B shows the related software codes.

e Initial code written showing successful operation of motes waking up on detecting
a certain level of activity and sending an email to the client

e Software scaling and threshold change to make accelerometer sensor more
sensitive

e Using smaller bit sized buffer for faster data processing and reduced data
transmission delay

e Implement animated GUI for displaying the dynamic data in a proper format on
screen

e Steaming/storing data in CSV file from the GUI

4. Testing and Evaluation

4.1 Battery Life Testing

Battery life is a critical factor for the low-cost sensors. It is not practical to test the Tmote
battery life for 6 months. In our experiment, we observed and measured the battery use
for about a month, and then predicted the total battery life using the data. Our test
indicated that the sensor nodes should be able to run for at least 6 months on two AAA
batteries.

In order to test this, a software module was developed to subject the motes to the
battery tests. The software continuously estimates the energy consumption of the
system. In the software runs on each Tmote node and estimates the energy
consumption, and send the data in each second to the host PC through the Java
program interface. The Java program shows the nodes' power consumption for the last
second.

When pushing the button on the nodes, they cycle through seven states as below. This
is reflected by their power consumption, as shown in the Java program. The different
states are:

Red LED: sending one packet per second

Green LED: radio listen 1% duty cycle

Green, red LEDs: radio listen 10% duty cycle

Blue LED: radio listen 100%

Blue, red LEDs: radio listen 10%, CPU low-power mode disabled
Blue, green LEDs: sending data 1.2 kilobytes/second

Blue, green, red LEDs: sending data 12 kilobytes/second

When sending data, the radio is turned on for a while before the transmission to check if
it is possible to send the packet. This is the reason why energy is spent on radio
listening even when the nodes are only sending data. Figure 3 shows the typical power
consumption of 6 nodes and the distribution of power use.

™
£
Q354
o
@ 30
@ 30
o 25
=
@ 20
15 4
10 1 |
Mode 42 Mode 43 Mode 44 Hode 45 Hode 48 Hode 47 Node 48
| LPM ® CPU [Radio listen O Radio transmit]
Moving Average: Relative power distribution Node 46: Total power usage (mW)
70
83 4
" ! f = ';ﬂ-ﬂ &0
ERadlotransmlt! = _CPI:I |
50 4
e
Gl
35 4
30
el
201
LR
.IL'- it = 10 4
- | < 7 |
| Radia listen | 54
12:09:00 12:09:30 12:10:00 12:10:30 12:11:00

Figure 3. Typical power consumption of 6 nodes (top); The distribution of power use
(bottom left); and average power use for one particular node.

The energy estimation mechanism uses a linear model for the sensor node energy
consumption. The total energy consumption E is defined as

E/V =lIntatht Hle e+t + 2 16 tg (1)

In the above equation, V is the supply voltage, |, and t, the current draw and the
running time of the microprocessor. || and t the current draw and the time of the
microprocessor in low power mode, |y and t; the current draw and the time when
transmitting data, I; and t. the current draw and time of the communication device when
receiving, and |l and t; the current draw and time of other components such as sensors
and LED’s. The energy model does not contain a term for the idle current draw of the
board itself. This is embedded in the low power mode draw of the microprocessor.

Figure 4 shows the power consumption of motes running the data collection software.
The left graph shows reading without optimization and the right graph shows them with
optimization. As we can see from the above graphs, the power consumption is much
less when the motes have been optimized. The states were performed repeatedly over
a period of 4 weeks with optimization.

r'a T T T T T T T nd L] T L] ¥ L T T T
Rain, listeming Fagio, listenirg ——
Hagio, fransmiffing AT
=L m CPU. active #Ehs
0.35 03 CPL, iche wm—
& [
£ 03 — M 2 03
[+} | | [+
E g
- -l
= “
R i — E 0%
L8 i
= P]
H 1]z
g oz g oz
H L]
30 B
™~ M 1
[] ;} ._
E o]
Zz Z
0.0%
T rrend ML A p':'r] oy T
e B 3:':"2‘1 e ik -_—E-r_ At e A it
2 1 L] § & 7] 2 3 5 £ B
Sansar nota Senedr nod

Figure 4. Power consumption of 8 motes. (Left) without optimization and (Right) with
optimization.

The actual battery voltage over a period of one month was recorded and shown in
Figure 5.

Mote Battery Voltage

millivolts
500
3,375 At
3,250 ~ w\"\,

3,125 " \"\'"""'""‘“-“
3,000 ‘“"“'L.,

2,875
2,750
2,525

2T T
11/14 1117 1172011,/23 11725811 /25 12/2 12/ 12/2 1271112714

Figure 5. Battery voltage variation of a wireless sensor node during the month from
November 14 and December 14, when the node was actively used for testing.

The low-voltage threshold for the Tmote to work is about 2.1V according to the
specification. As we can see from the figure, the motes are at all intervals are above this
threshold even after a month of heavy use as described above and in the next
subsection. More importantly, the rate of drop is approximately 0.4V/month. Therefore
the estimated battery life at this rate will be (3.5-2.1)/0.4 moth, or about 3.5 months
under the heavy use condition. Combining the information from Figs. 3-5, it is estimated
that the battery life will be at least 6 months if the Tmote is mostly kept in “sleep” state,
as in practical application condition, given that only a fraction of power is required under
such condition.

4.2 Field Testings

Three on-site tests were performed to acquire vibration signals from three typical
construction equipments: Jack Hammer, Backhoe, and Heavy Truck. In each test, the
signals were acquired at two distances to the equipment: 4.5 feet and 1.5 feet. Since
the sites were in different phases of construction, no single site contained all the
commonly used construction equipment. As a result, multiple sites on the campus of
Texas A&M University (as shown in Sections 4.2.1, 4.2.2, and 4.2.3) were chosen for
testing.

All tests were performed on a clear day with temperatures ranging from 25 °C to 32 °C.
A Tmote was placed on soft porous surface by a hard — hat construction worker at the
specified distance to the equipment to be tested. This was because we were not
allowed to enter the construction area due to safety concerns and OHSA criteria.

The Laptop and Tmote were setup as described in Section 3.2. It involved starting the
Sentilla Suite by clicking on its icon and plugging the USB Wireless Receiver into the
host computer. The user is then loaded the mote software onto the various motes
automatically connected on the network in the ‘mote section’ of Sentilla Suite. At the
same time, the client software is loaded into the ‘client section’ of the above suite. This
was required to setup proper communication and data transmission between the motes
and client, but only has to be done once at the beginning of the application.

A single program code was used for process the data from all the on — site testing. The
code was completely written in Java and provides a sensitivity of — 5.7g to 4.5g for
detecting vibrations produced. The data is acquired at the rate of 5 Hz and maybe
increased to up to 10 Hz if more samples are needed. However, it was noticed that
larger the sampling rate, the more the latency. This latency however reaches close to

zero as time increases.

4.2.1 Jackhammer

Site I: Ross Street

Date: Dec. 10, 2008

Jackhammer is one of the
cheapest options available in the
market for digging through
concrete surfaces. It is under
concrete surfaces in the city
where most of the pipelines are
dug and the workers, at times,
are not aware of these pipelines.

Tmote distance from the equipment: 1.5 feet

The follow graph shows a snapshot of 10-second capture sensors signals from the
Tmote. In all signals graphs, the top (blue) is the temperature, and the other three
correspond to the three axes of the accelerometer: Xinred, Y in green, Z in cyan

|+ Rppiet ¥i - Applet Viewer: K reatelemat llentApp,class
Applat Appiat i i

il B2 recet vever: ren [KR

In the test, the jackhammer was initially off, then turned on for about 2 seconds, then off
again. It is clear from the graph that the vibration were detected and reflected in the
sudden spikes in all the three (X is pink, Y is green, Z is cyan) axes. When the
jackhammer was turned off, straight lines were observed indicating that there was no
activity.

Tmote distance from the equipment: 4.5 feet

The following graph is from the test where the Tmote was kept at a distance of 4.5 feet
away from the Jackhammer. It shows that the Tmote was able to pick up the vibrations
but after a delay of 2-3 seconds. The delay may be due to the delayed Tmote “wakeup”
or communication loss, which we expect to be able to eliminate in the future. It is seen
that the vibrations readings picked up by the motes decreased by a only a slight amount.
This can be attributed to the fact that some energy has been lost by the waves as they
travel further.

lﬁ;:ﬂ\'h\:ﬂ: J‘E‘rnlo‘h‘c:‘z;él‘l‘omlpp.(lus :_'_'__j. kﬁ

Appisl

‘99000000 OORRIOOOOOROROY o' 106G

QrOVTY swom

4.2.2 Backhoe
Site II: Zachary Parking Lot
Date: Dec. 12, 2008

A backhoe was chosen as
equipment for testing since it
poses danger to pipelines. They
are powerful earth moving
equipment that can cause
significant damage.

Tmote distance from the
equipment: 1.5 feet

|5 Koplat Vi o= Applat Viewer: JCreatabemoCliontApp.class
Appied Applet

]
....000...0

The graph shows a slow pattern of vibrations as the backhoe approached the ground
with a sudden activity increase in the middle as soon as it started applying forces to dig

deeper. Towards the end, there was a sudden drop and stabilization of readings on all
the axes. This indicates that the backhoe has finished one digging cycle.

Tmote distance from the equipment: 4.5 feet

lﬁ;:ﬂ\'h\:ﬂ: J‘E‘rnlo‘h‘c:‘z;él‘l‘omlpp.(lus :_'_'__j. kﬁ

Appis

®
[
20000000000000000000000080000 e 0d g
@

At this distance, we again observe a delay of signal startup, however, the signal
intensity is only slightly reduced as comparing to that of at 1.5 feet.

4.2.3 Construction Truck

Site Il Physics Building on the
University Drive

Date: Dec. 12, 2008

¥

Trucks, as we all know are one of
the most common construction site
vehicles but they pose no harm to
the pipelines. This experiment is
designed to test whether the sensor
signals from the truck can be
differentiated from other —— T—— ,
construction equipments. It is important because we desire the motes not provide any
false alarm.

g

nnnnnn

Tmote distance from the equipment: 1.5 feet

Applet

900000000000 0s 0,0 soeoe’
]

-1.2G

“pplet starled

[STAr e Bl ETNE T | I et v e Qo WE e

The graph shows a very steady increase in the activity pattern. This demonstrates the

engine starting in a truck. As the truck steadily accelerates from zero to some speed, we
see a steady increase in the readings. As it goes away from the Tmote, the vibrations
start reduce towards the end.

Tmote distance from the equipment: 4.5 feet

lﬁ;:ﬂ\'h\:ﬂ: J‘E‘rnlo‘h‘c:‘z;él‘l‘omlpp.(lus :_'_'__j. kﬁ

Appis

2900900000000 e00000? 000000000000 0000000000%000000 0000000
2

).9 (

It is evident that the heavy diesel engine truck produces much less detectable vibrations
at this distance. It seems that these vibrations decay quickly in distance. As a result,
when motes are placed at a further distance from the equipment, the spikes were
observed only when the engine was started.

In summary, these on-site tests show that: 1) there are sufficient signal signatures to
differentiate the three equipment types; 2) intelligent signal pattern recognition is
required to use these signatures; 3) the signals acquired at 1.5 feet and 4.5 feet have
similar intensity, indicating that the vibration signals do not decay very fast over distance.

5. Conclusion and Future Work

We have completed the initial development and validation of the wireless sensor
technology we proposed to use to detect ROW intrusion by construction type equipment.
We developed and tested the technique on a single wireless sensor and a laptop
computer, and successfully demonstrated its feasibility. The outcomes of our testing
show clearly that our approach should be viable for detecting ROW intrusion by digging
equipment. Specifically, we conclude that: 1) the battery life of the low-cost sensor can
be more than 6 months based on our test. 2) the on-board, sensitive accelerometer can
capture sufficiently signals to detect and differentiate three types of construction
equipments (Jackhammer, Backhoe, and Truck) at a distance of 1.5 feet and 4.5 feet.

These initial results were extremely encouraging and exciting. However, significant
challenges and work remain to further develop the technique to produce a fully-
functional prototype that can be brought to pipeline operating companies for field testing.
These include but not limited to: improving reliability and validating the timing accuracy
of captured signals; testing at extended distance; developing automatic training
algorithm to tune the event detection parameters; improving the package of the motes,
the robustness of software; scaling up the sensor node numbers (50 to 100 nodes) to
form a larger array capable of operating autonomously for an entire season of
six months or more in the field; developing intelligent pattern recognition program on the
host computer to reduce false alarms; and system integration.

References:

1. M. Buettner, G. V. Yee, E. Anderson, and R. Han. Xmac: a short preamble mac protocol for
duty-cycled wireless sensor networks. In Proceedings of the 4th international conference on
Embedded networked sensor systems, Boulder, Colorado, USA, 2006.

2. http://ncseonline.org/NLE/CRSreports/energy/eng66.cfm?&CFID=19199705& CFTOKEN=2
4439530

3. Altmann, J., “Acoustic and seismic signals of heavy military vehicles for co-operative
verification,” Journal of Sound and Vibration, vol 273, no. 4, 713-740, 2004.

4. Arora, A. and Dutta, P. and Bapat, S. and Kulathumani, V. and Zhang, H. and Naik, V. and
Mittal, V. and Cao, H. and Demirbas, M. and Gouda, M. and others, “A line in the sand: a
wireless sensor network for target detection, classification, and tracking,” Computer
Networks, vol. 26, no. 5, 605--634, 2004.

5. Crossbow Produce Reference
http://www.xbow.com/Support/Support_pdf files/Product Feature Reference Chart.pdf

6. Wireless sensor networks, Nirupama Bulusu, Sanjay Jha, ed., Artech House, Boston, 2005

Appendix A: Abstract Submitted in September 2008 to Pipeline Safety Conference

Active Pipeline Encroachment Detector Using Wireless Sensor Networks
Leslie Olson, Harneet Singh, Andrew Chan, Jim Ji

Of the many pipeline accident causes to pipelines, approximately 60% of gas pipeline incidents are
caused by outside forces (mechanical damage) from a digging or excavation activity. Pipeline industry
statistics indicate that half of the accidents are caused due to incursion of excavating activities into the
right of way. In addition, the potential for mechanical damage to be inflicted to pipelines located in or near
urban expansion areas has become a major concern.

A recent technical advance is the ThreatScan system which relies on acoustic waves traveling through
the product in the pipeline. However, installation and maintenance of such systems are expensive. Other
security surveillance technologies have been developed or are being investigated. These technologies
such as aerial surveillance using automated drones, video cameras and infrared detectors cannot work
continuously on battery for more than a few days/weeks. Therefore, low cost, long-life, self monitoring
sensors are desirable for localized installation and monitoring of pipeline right-of-way.

To address this problem, a pipeline encroachment detector system based on wireless sensor networks is
developed. The system consists of a network of commercially available sensors, each connected to each
other and a laptop client computer through IEEE 802.15.4 wireless link at up to 256 kbps rate. Each
sensor unit is equipped with a 3-axis accelerometer. The accelerometer can detect motion as small as
0.1g acceleration. The sensor unit and wireless controller are set in a “sleep” mode. Using two standard
AAA batteries, the unit can be installed and used without human intervention for a period of up to 6
months. The entire system is coupled with a 16-bit, 8 MHz TI MSP 430 microcontroller, which enables it
to acquire and distinguish data from different sensors and make intelligent decisions before relaying the
information to the client through a wireless link. The information relayed is displayed as waveforms on the
screen via an Applet. This enables a visual representation of the data in real time at a remote location. An
intelligent pattern recognition algorithm is applied to reduce the false alarms. The system can detect small
irregular motion when attached to physical objects. Continued develop of the pattern recognition software
and initial field testing is ongoing The results will be reported in the conference.

[Applet Viewer: Createbiemet Heath pp class e |
.

Fig. 1 Sensor data sampled
during a static state period (left
half) and a motion state period
(right half). The sensor unit was
put on a platform which
undergoes a moderate motion.
Data from the accelerometer are
shown in red (x-axis), green (-
axis) and cyan (z-axis).

9 9 ¢ 9o & o o o o 0 4 o o

Appendix B: Software Codes

Mote Code:

import com.sentilla.system.SensorDriver;

import com.sentilla.system.Sensor;

import com.sentilla.net.Sender;

import com.sentilla.net.SenderDriver;

import com.sentilla.platform.tmote.VoltageAdc;
import com.sentilla.platform.tmote.McuVoltage;
import com.sentilla.platform.tmote.McuTemperature;

import com.sentilla.net.*;

import java.io.Serializable;

import javax.measure.quantity.Acceleration;
import javax.measure.quantity.Temperature;
import javax.measure.quantity.ElectricPotential;
public class JCreateDemoMoteApp
{
public static class JCreateMessage implements Serializable
{
long motelD;

double temperature;

double potential;
double x;
doubley;

double z;

public static void motemain()throws InterruptedException

{

//Create Sender

Sender sender = SenderDriver.create("local");

//Create Sensors

Sensor<Temperature> ts = SensorDriver.create("temp", Temperature.class);
Sensor<ElectricPotential> ps = SensorDriver.create("volt",ElectricPotential.class);
Accelerometer accel = new Accelerometer(true, true, true);

accel.calibrate();

//CreateMessage

JCreateMessage jmsg = new JCreateMessage();

//Get ID

jmsg.motelD = Mac64Address.getLocalAddress().longValue();

float[] aread = new float[3];

while(true)

{
//Take the measurement;
jmsg.temperature = ts.read().doubleValue(Temperature.UNIT);
jmsg.potential = ps.read().doubleValue(ElectricPotential.UNIT);
accel.getMultipleReadings(aread);
jmsg.x = aread[0];
jmsg.y = aread[1];

jmsg.z = aread[2];

//Send off

sender.send(jmsg);

//Sleep for 1 second;

//Thread.sleep(500);

Client Code:

import com.sentilla.host.client.HostClient;
import com.sentilla.net.Receiver;

import com.sentilla.net.ReceiverDriver;
import processing.core.*;

import javax.measure.quantity.*;

public class JCreateDemoClientApp extends PApplet {

//Instantiate basic components

Receiver receiver;

JCreateDemoMoteApp.JCreateMessage jmsg= new JCreateDemoMoteApp.JCreateMessage();

PFont font;

public void setup()

{

// Set up the graph

size(1000, 500);

stroke(255);

frameRate(30);

background(0);

font = createFont("FFScala", 20);
textFont(font, width/60);

redraw();

/* create the host server connection */
HostClient host = new HostClient();
try
{
host.connect();

}

catch (Exception e){}

//Start receiver
receiver = ReceiverDriver.create(JCreateDemoMoteApp.JCreateMessage.class);
receiver.cancel();

receiver.setReceive().submit();

//globals

int arraysize = 30;

int counter = 0;

double[] xArr = new double[arraysize];
double[] yArr = new double[arraysize];
double[] zArr = new double[arraysize];
double[] tempArr = new double [arraysize];

double[] timeArr = new double[arraysize];

//globals to help with animation
float xposold;
float yposold;
float[] xpoints = new float[arraysize];

float[] ypoints = new float[arraysize];

public void draw()

//if we've got a message get new data
if (receiver.isDone())
{
jmsg = (JCreateDemoMoteApp.JCreateMessage) receiver.getData();

receiver.setReceive().submit();

addValue(xArr,jmsg.x);
addValue(tempArr,jmsg.temperature - 273);
addValue(yArr, jmsg.y);

addValue(zArr, jmsg.z);
addValue(timeArr,(double)System.currentTimeMillis());
if (counter < arraysize) counter++;

animcounter =0;

//draw plots, animate smoothly if we have new data
background(0);

smooth();
plotlineanim(2*height/9,height/9,tempArr,0,100,255,"C");
plotlineanim(4*height/9,height/9,xArr,200,0,100,"G");
plotlineanim(6*height/9,height/9,yArr,65,140,130,"G");

plotlineanim(8*height/9,height/9,zArr,0,255,255,"G");

if (animcounter < animlimit) animcounter++;

public static void main(String args[]) {

PApplet.main(new String[] { "--present", "EHVClientApp" });

//Effectively make a double a circular array

void addValue(double[] dubArr, double addVal)

{
for (int i = dubArr.length-1; i > 0; i--)
{
dubArr[i] = dubArrli - 1];
}
dubArr[0] = addVal;
}

//Simple plot a line, no animation

void plotline(float base, float maxheight, double[] dubArr, int r, int g, int b, String units)

{

float max = (float)findMax(dubArr);
float min = (float)findMinNotZero(dubArr);

float range = max - min;

float xpos;

float ypos;

float xposold;

float yposold;

float[] xpoints = new float[dubArr.length];

float[] ypoints = new float[dubArr.length];

//draw dots
for (floati = 0; i < dubArr.length; i ++)
{

//Determine X Position

xpos = (width-100) - ((arraysize - counter) + i)/((float)dubArr.length)*(width-
100);

xpoints[(int)i] = xpos;

//Determine Y Position, auto scale
ypos = base-(float)((dubArr[(int)i]-min)/range * maxheight);

ypoints[(int)i] = ypos;

//Draw Dots

ellipseMode(CENTER);

fill(r,g,b);
stroke(r,g,b);

if (counter > (int)i) ellipse(xpos, ypos, width/100, width/100);

//connect dots

for (inti=0; i< dubArr.length-1; i++)

{
stroke(r,g,b);
if (counter > (int)i+1) curve(
xpoints[i]*2/3+xpoints[i+1]/3,ypoints[i]*2/3+ypoints[i+1]/3,
xpoints[il,ypointsli],
xpoints[i+1],ypoints[i+1],
xpoints[il/3+xpoints[i+1]*2/3,ypoints[i]/3+ypoints[i+1]*2/3
);
}

//Show current value

float now = (float)dubArr[0];
now = round(now*10);

now = now/10;

String out = String.valueOf(now)+" "+units;

fill(r,g,b);

textFont(font, width/60);
textAlign(RIGHT);

text(out,width-10,base-maxheight/2);

//Show min value
max = round(max*10);
max = max/10;

out = String.valueOf(max)+" "+units;
fill(r,g,b);

textFont(font, width/60);
textAlign(LEFT);

text(out,10,base-maxheight-20);

//Show max value

min = round(min*10);

min = min/10;

out = String.valueOf(min)+" "+units;
fill(r,g,b);

textFont(font, width/60);

textAlign(LEFT);

text(out,10,base+20);

float animcounter = 0;

float animlimit = 500;

void plotlineanim(float base, float maxheight, double[] dubArr, intr, int g, int b, String units)

{

//find max and min in range
float max = (float) dubArr[0];
float min= (float) dubArr[0];
float range;
for (inti=0; i< dubArr.length-1; i ++)
{
if (dubArr[i] > max) max = (float)dubArr[i];
if (dubArr[i] < min && dubArr[i] != 0) min = (float)dubArr[i];
}

range = max - min;;

//find old max and min
float oldmax = (float) dubArr[1];
float oldmin= (float)dubArr[1];
float oldrange;
for (inti=1;i<dubArr.length;i++)
{
if (dubArr[i] > oldmax) oldmax = (float)dubArr[i];

if (dubArr[i] < oldmin && dubArr[i] != 0) oldmin = (float)dubArr[i];

}

oldrange = oldmax - oldmin;

//Animate based on old values and new values, linearly interpolated
float xpos;

float xposnow;

float xposold;

float ypos;

float yposnow;

float yposold;

//calculate points
for (floati = 0; i < dubArr.length; i ++)
{

//Determine X Position

xposnow = (width-100) - ((arraysize - counter) +
i)/((float)dubArr.length)*(width-100);

//Determine Y Position, auto scale

yposnow = base-(float)((dubArr[(int)i]-min)/range * maxheight);

//0ld X-Point Determination
if (counter == arraysize && i !=0)
{

xposold = (width-100) - ((arraysize - counter) + i-
1)/((float)dubArr.length)*(width-100);

else

xposold = xposnow;

//0ld Y-point Determination
if (i!=0)
{

yposold = base-(float)((dubArr[(int)i]-oldmin)/oldrange *
maxheight);

else

yposold = yposnow;

//Weighted average slides as a function of animcounter

xpoints[(int)i] = ((animcounter*xposnow) + (animlimit-
animcounter)*xposold)/animlimit;

ypoints[(int)i] = ((animcounter*yposnow) + (animlimit-
animcounter)*yposold)/animlimit;

if (animcounter < animlimit)animcounter ++;

//Draw Dots
for (inti=0;i<dubArr.length;i++)

{

ellipseMode(CENTER);
stroke(r,g,b);
//if point is new make the dot grow from nothing
if (i==0)
{
fill(
(float)r*(animcounter/animlimit),
(float)g*(animcounter/animlimit),
(float)b*(animcounter/animlimit)
);
float rad = width/100 * animcounter/animlimit;

if (counter > (int)i) ellipse(xpoints[i], ypoints[i], rad, rad);

//if point is about to dying make it shrink to nothing

else if (i == dubArr.length-1)

fill(
(float)r*(1-(animcounter/animlimit)),
(float)g*(1-(animcounter/animlimit)),
(float)b*(1-(animcounter/animlimit))
);
float rad = width/100 * (1-(animcounter/animlimit));

if (counter > (int)i) ellipse(xpoints[il, ypoints[i], rad, rad);

//just draw the dot
else
{
fill(r,g,b);
if (counter > (int)i) ellipse(xpoints[i], ypoints][i], width/100, width/100);

}

//connect dots
for (inti=0; i< dubArr.length-1; i++)
{
//if connection is new make line fade in

if (i == 0)

stroke(
(float)r*(animcounter/animlimit),
(float)g*(animcounter/animlimit),

(float)b*(animcounter/animlimit)

}

//if connection is about to be lost make line fade out

else if (i == dubArr.length-2)

{
stroke(
(float)r*(1-(animcounter/animlimit)),
(float)g*(1-(animcounter/animlimit)),
(float)b*(1-(animcounter/animlimit))
);
}

//else just draw the line

else stroke(r,g,b);

if (counter > (int)i+1) curve(
xpoints[i]*2/3+xpoints[i+1]/3,ypoints[i]*2/3+ypoints[i+1]/3,
xpoints[i],ypointsli],
xpoints[i+1],ypoints[i+1],

xpoints[i]/3+xpoints[i+1]*2/3,ypoints[i]/3+ypoints[i+1]*2/3

//Show current value, smooth animation between (appears to scroll)
float now = (float)dubArr[0];

float then = (float)dubArr[1];

now = ((animcounter*now) + (animlimit-animcounter)*then)/animlimit;
now = round(now*10);

now = now/10;

String out = String.valueOf(now)+" "+units;
fill(r,g,b);

textFont(font, width/60);
textAlign(RIGHT);

text(out,width-10,base-maxheight/2);

//Show min value, same smooth animation

max = ((animcounter*max) + (animlimit-animcounter)*oldmax)/animlimit;
max = round(max*10);

max = max/10;

out = String.valueOf(max)+" "+units;
fill(r,g,b);

textFont(font, width/60);
textAlign(LEFT);

text(out,10,base-maxheight-20);

//Show max value, smoof

min = ((animcounter*min) + (animlimit-animcounter)*oldmin)/animlimit;
min = round(min*10);

min = min/10;

out = String.valueOf(min)+" "+units;

fill(r,g,b);

textFont(font, width/60);

textAlign(LEFT);

text(out,10,base+20);

//rough attempt at 1D time-axis, imperfect

void plottime (float base, double[] timeArr)

{

double timenow = timeArr[0]/1000;

double timeold = timeArr[timeArr.length-1]/1000;
String now = String.valueOf(timenow-timenow);
double out = timeold - timenow;

String old = String.valueOf(round((float)out))+"s";
fill(255);

textFont(font, width/60);

text(old,width/(float)arraysize,base);

text("0",width-width/(float)arraysize,base);

stroke(255);

line(width/arraysize,base-20,(arraysize-1)*width/arraysize,base-20);

double findMax(double[] dubArr)

{
double dubMax = dubArr[0];
for (inti=0; i< dubArr.length; i++)
{
if (dubArr[i]>dubMax) dubMax = dubArr[i];
}
return dubMax;
}

double findMin(double[] dubArr)

{
double dubMin = dubArr[0];
for (inti=0; i< dubArr.length; i++)
{

if (dubArr[i]l<dubMin) dubMin = dubArr[i];

return dubMin;

double findMinNotZero(double[] dubArr)

{

double dubMin = dubArr[0];
for (inti=0; i< dubArr.length; i++)
{

if (dubArr[i]l<dubMin && dubArr[i] != 0) dubMin = dubArr(i];

return dubMin;

