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Task 1. Development and optimizing macro/micro physical prototypes in laboratory and
field conditions for validation of deterministic modeling.

The validation of the developed deterministic model across both macro/micro scales has
been performed at the laboratory scale (full control), field scale with survey databases. In this case
we will combine field conditions with control anomalies, focusing on different distinct cases. The
physical model will run under different conditions based on the current test set up to identify and
characterize different local conditions. The pipeline is used for water transportation and is about
51 yards of length. The pipeline is 4inch diameter and is buried in clay soil. The steel pipeline is
not coated and is a straight line with different top layer conditions. Some parts are soil and other
parts are concrete along the right of way.

The experimental matrix is set based on different local conditions of the pipeline, cathodic
protection system (impress and sacrificial) and locations of the anomalies or conditions along the
right of way.

Schematic of the pipeline set up

Figure 1 presents the schematic layout of the field site used for pipeline corrosion. The figure
shows the relative locations of the pipeline, the concrete section, the sacrificial anode, and the
coupon exposure sites, along with the reference marker for each component.

The pipeline starting point is marked at Point No. 1 and extends longitudinally across the test area.
From the start point, the first section of the pipeline runs approximately 14 m before reaching a
concrete-encased driveway. This driveway section spans a length of 20 m, after which the pipeline
continues for an additional 33m to the End point of the test section. This arrangement allows
comparison of pipeline behavior in soil-exposed regions before and after the concrete encasement.
Close to the starting point, a pipeline connection structure is present inside a manhole. From this
location, a wired connection has been made to connect to the galvanic anode. A magnesium
sacrificial anode is installed at a horizontal distance of approximately 10 m from this buried



pipeline segment. The anode serves as the sacrificial cathodic protection for the pipeline in this
area.

Three coupon exposure sites are installed along the pipeline to monitor the state of the pipe in the
soil and the effectiveness of cathodic protection. Coupon Site 1 is located near the first soil-
exposed pipeline section, upstream of the concrete encasement and relatively close to the
magnesium anode.

Coupon Site 2 and Coupon Site 3 will be located downstream of the concrete section, along the
final pipeline segment. These sites are positioned at different locations along the pipeline to assess
changes in protection level and corrosion behavior with increasing distance from the anode.
Pipe-to-soil (on mode) potential measurements were taken along the pipeline at intervals of 1 m
over the length of the test section. At each measurement point, a Cu/CuSOas reference electrode
was placed on the soil surface directly above or adjacent to the pipeline to ensure localized and
consistent potential measurements. The same reference electrode was also used for coupon
potential measurements, positioned close to the burial location of each coupon to minimize IR
drop and local soil effects.

In addition to potential measurements, soil resistivity measurements were conducted along a
route parallel to the pipeline, with measurement locations spaced at 4 m intervals. Soil resistivity
was measured using the four-pin method, in which four equally spaced electrodes were inserted
in a straight line and the resistance of the soil. This method provides an average resistivity value
representative of the soil volume influencing cathodic protection current distribution.
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Figure 1. Schematic of the pipeline



Task 2: Integrating field inspection, theoretical, with experimental data by applying
pattern recognition techniques relating the pipeline-coating-soil system with CP.
Proposed framework

Figure 2 shows the pipe-to-soil ON potential measurements collected along the pipeline at 1 m
spacing, plotted as a function of measurement point number for five different survey dates. Across
all dates, the ON potentials are consistently negative, indicating that the pipeline remains under
cathodic protection along the entire monitored length. A clear spatial trend is observed near the
initial section of the line, where the potentials are more negative and show greater scatter, likely
reflecting proximity to the magnesium anode and local variations in soil conditions. Temporal
differences between survey dates are also evident: some dates show slightly more negative
potential overall, while others exhibit less polarization, indicating changes in CP current output,
soil resistivity, or environmental conditions over time.

Soil resistivity measurements collected along the pipeline at 4 m spacing are shown in figure 3,
plotted as a function of measurement point number for multiple survey dates. The resistivity values
vary along the route, indicating non-uniform soil conditions across the test section. Lower
resistivity values are generally observed near the initial measurement points, while higher
resistivity regions appear further along the line, particularly in the mid-to-downstream portion of
the pipeline. Although the overall spatial trend is similar for all survey dates, noticeable differences
in absolute resistivity are present between survey dates, suggesting temporal variability likely
associated with changes in soil moisture content, temperature, or recent environmental conditions.
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Figure 2. Pipe-to-soil ON potential measurements collected along the pipeline at 1 m spacing for
multiple survey dates.
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Figure 3. Soil resistivity measurements obtained along the pipeline.
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Figure 4. Potential measurements from different coupon

As shown in Figure 4, the coupons were buried at regular intervals at each site and embedded at
locations more than 30 cm below the ground surface. Each coupon was connected in series to the



control panel, while individual measurements were conducted separately by connecting each
coupon to the magnesium sacrificial anode.

Table 1 and Table 2 present the ON potential measurements obtained from the different coated
and bare steel coupons under controlled field conditions. In Table 1, the measurements were
conducted while the pipeline was electrically connected to the magnesium sacrificial anode,
representing cathodic protection conditions. In contrast, Table 2 corresponds to measurements
taken with the pipeline electrically disconnected from the anode, allowing evaluation of coupon
potentials in the absence of cathodic protection current (off potential).

To obtain the values reported for the anode-disconnected condition (Table 2), the electrical
connection between the pipeline and the magnesium anode was momentarily interrupted during
the measurement. The disconnection was kept brief to avoid significant depolarization of the
system, thereby allowing comparison between protected and unprotected conditions (IR drop) at
nearly identical environmental states.

Coupons labeled as intact represent specimens with fully intact coatings and no intentional defects.
Coupons designated H-S and H-L correspond to coatings with artificial holidays of 0.218 cm? and
0.507 cm?, respectively, while H-XL denotes coupons with a much larger exposed area of
approximately 25 cm2. The Polarized coupons was anodically polarized to 2.0 V prior to
measurement to initiate localized coating breakdown and pitting, after which ON potentials were
recorded.

The table includes data for multiple coating systems, including coal tar (single- and double-coat
systems, white pigment (4500)), fusion-bonded epoxy (FBE), and bare steel. The FBE coating
thickness was approximately 25-30 mils, representative of typical field-applied FBE coatings.
Together, Tables 1 and 2 allow direct comparison of coupon behavior under protected and
unprotected conditions, as well as assessment of the effects of coating type, defect size, and
induced damage on measured electrochemical potentials.

Table 1. Coupon ON potential measurements with anode connected

Coating Date of measurement (in volts) vs Cu/CuSQO4
Type 2025-12-08 2025-12-16 2025-12-22
Intact H-S H-L H-XL Polarize Intact H-S H-L H-XL Polariz Intact H-S H-L H-XL Polarize
d ed d
Coal Tar
- 1Coat -1.42 | -1.42 | -1.43 -1.46 | -1.46 | -1.46 -1.47 | -1.47 | -1.47
Coal Tar
- 2Coat -1.42 | -1.42 | -1.43 -1.46 | -1.46 | -1.46 -1.47 | -1.47 | -1.47
4500-25
mils -1.42 | -1.43 | -1.43 -1.46 | -1.46 | -1.46 -1.47 | -1.47 | -1.47
4500-45
mils -1.42 | -1.43 | -1.43 -1.46 | -1.46 | -1.46 -1.47 | -1.47 | -1.47
Bare
Steel -1.42 -1.43
FBE
-146 | -1.46 | -1.46 | -1.46 | -1.46 | -1.46 | -1.46 | -1.46 | -1.46 | -1.46




Table 2. Coupon ON potential measurements with anode disconnected

Coating Date of measurement (in volts)
Types 2025-12-08 2025-12-16 2025-12-22

Intact H-S H-L H- Polarized Intact H-S H-L H-XL Polariz | Intact H-S H-L H-XL Polarize

XL ed d
Coal Tar
- 1Coat -1.06 | -1.03 | -1.02 - -1.08 | -1.07 | -1.06 -1.08 | -1.06 | -1.05
Coal Tar
- 2Coat -1.04 | -1.03 | -1.02 -1.08 | -1.07 | -1.06 -1.07 | -1.06 | -1.05
4500-25
mils -1.03 | -1.03 | -1.02 -1.08 | -1.07 | -1.06 -1.07 | -1.06 | -1.05
4500-45
mils -1.03 | -1.02 | -1.02 -1.07 | -1.06 | -1.05 -1.07 | -1.06 | -1.05
Bare
Steel -1.02 -1.02
FBE
-1.05 | -1.05 | -1.05 | -1.04 | -1.04 | -1.05 | -1.05 | -1.05 | -1.04 | -1.04

Task 3: Validation of the a priori framework with experimental and field conditions for
characterization/modeling and Evaluation/Validation

Multilevel Bayesian Modelling

During the previous quarter, we developed a Bayesian machine learning framework that integrates
theoretical predictions, experimental findings, and field inspection data to quantify interactions
within the pipeline—coating—soil-CP system. In the current quarter, we focused on a more efficient
implementation using a multilevel modeling approach.

The Bayesian multilevel refinement model provides a computationally efficient way to estimate
the underlying coating impedance along a pipeline while retaining full uncertainty quantification.
At its core, the method couples a 1D physics-based Transmission Line Model (TLM) of cathodic
protection with a hierarchical Bayesian formulation. The TLM describes how the pipe—soil
potential responds to spatial variations in soil resistivity, coating condition, and anode locations,
and is discretized into a linear system whose solution yields the potential field ¢(x). The coating
impedance Z(x) is not treated as a fixed input; instead, it is inferred as a latent field from noisy
close-interval potential surveys (CIPS), encoded through a finite number of parameters (e.qg.,
lognormal coating resistivity segments) that control a smooth impedance profile along the route.
A fully fine-resolution Bayesian inversion over an entire long pipeline would be prohibitively
expensive: every additional degree of freedom in the impedance field increases the Bayesian
updating parameter dimension, the cost of each forward solve, and the number of evaluations
that NUTS algorithm needs to explore the posterior. At the same time, the field data (CIPS and
soil resistivity) do not justify uniformly high resolution everywhere; many segments are
relatively uniform or low-risk, while only certain regions (e.g., near anodes, suspected defects, or
anomalous readings) truly demand fine detail. We observed that a multilevel refinement
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approach addresses this imbalance: it uses a coarse global model to capture large-scale behavior
and then selectively refines only those segments where additional resolution actually adds
information. Hence, the overall multilevel modelling consists of three units (Figure 5):

1.

Segmentation Unit: A multilevel discretization module that first assigns coarse coating
segments over the full pipeline and then defines refined windows with finer segments
where more detail is needed. It controls the mapping from segment parameters to nodal
quantities at both global and local scales, and it also governs the choice of Neumann vs.
Dirichlet boundary treatments in the different stages.

Bayesian TLM: A physics-informed Bayesian Transmission Line Model that links coating
impedance, soil resistivity, anode configuration, and boundary conditions to the pipe—soil
potential. This unit encodes the forward model and likelihood and provides posterior
estimates of potential and impedance at the chosen resolution. Computationally, we exploit
the tridiagonal band structure of the TLM system using a custom banded solver, which
significantly reduces the cost of each forward solve and thus accelerates sampling.
Posterior Blending: A synthesis step that merges the coarse global posterior with the
refined local posteriors into a single multi-resolution field. Coarse results provide the
backbone; refined windows overwrite or smoothly blend into this backbone in their
respective regions, including overlap handling, to produce final means and credible
intervals for impedance and potential along the entire route.
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Figure 5: Multilevel Bayesian modelling

Methodology

The first step is a coarse-resolution Bayesian inversion across the full pipeline. The domain is
divided into relatively large coating segments, each with a latent lognormal coating resistivity

parameter that controls the local impedance via the dielectric coating model. This coarse
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parameterization drastically reduces the dimensionality of the problem, making posterior
sampling manageable while still allowing spatial variability in impedance at a large scale.
These segment parameters are mapped to nodal impedances through the dielectric coating model
and embedded into the TLM operator. Given observed CIPS data and an observation-noise
model, NUTS sampling is used to draw from the joint posterior over the coarse coating
parameters, the potential field, and the noise scale. This produces a global posterior estimate of
potential and impedance that is fast to compute and already reflects the main spatial trends and
data constraints. Figure 1 (b) illustrates the Bayesian Transmission Line Model framework.

In the global coarse run, Neumann boundary conditions are used at the ends of the modeled
pipeline segment (a physically motivated approximate “natural” boundary condition consistent
with the expected CP potential near -0.85 V). At this stage, endpoint potentials are not known,
and imposing arbitrary fixed values would risk over-constraining the solution. A Neumann
condition lets the global model find an internally consistent potential profile given the data, soil,
and anodes.

Importantly, this coarse inversion is not just a computational convenience; it is also essential for
well-posed refinement. When we later zoom into a subdomain for fine resolution, that
subdomain is not physically isolated: currents and potentials are influenced by conditions outside
the window. Running a highly resolved local model with arbitrary boundary conditions could
yield refined solutions that look smooth locally but are globally inconsistent. The coarse model
resolves this by providing physically grounded estimates of the potential at the boundaries of
each refinement window, together with their uncertainty. These boundary values from the coarse
posterior become the “anchors” that tie each refined inversion back to the overall system
behavior.

The next stage introduces local refinement on selected subdomains where more resolution is
desired for example, regions with suspected coating degradation. For each refinement window
[xa, x5], the model is restricted to this subdomain, and the TLM is re-discretized with a finer
coating parameterization. Here we impose Dirichlet boundary conditions at xq and x» using
coarse posterior summaries. This effectively conditions the refined model on the global solution:
the fine model must match the coarse behavior at the boundaries but is allowed more flexibility
inside the window via the finer parameterization. Within each window, a new Bayesian inversion
is run, inferring a higher-resolution impedance profile that is consistent with both the local data
and the global context provided by the coarse model.

Multiple refinement windows can be defined along the route. Windows may overlap, in that
case, each window produces its own refined posterior over potential and impedance on the
overlapping region. Finally, the refined windows are stitched back into a single global
impedance and potential profile by blending their posteriors with the original coarse posterior
always accompanied by uncertainty bounds that propagate through both levels of the modelling
hierarchy.

Preliminary results of the proposed framewaork applied to a 50 km pipeline are shown in Figure
6. Figure 6(a) presents the close-interval potential survey (CIPS) data along the pipeline (black
points), overlaid with the coarse global Bayesian TLM posterior mean (red dashed line) and the
refined multilevel posterior mean (green line). The coarse model is applied with 1 km coating



segments, so it uses a relatively small number of impedance parameters to capture the large-scale
behavior. For refinement, the model uses higher-resolution coating segments of length 0.25 km
along the entire pipeline as a proof of concept; in practice, this refinement would be applied only
in selected regions. Figure 6(b,c) shows zoomed-in impedance posteriors for two representative
segments. In each inset, the red band denotes the coarse-resolution posterior (mean and 95%
credible interval) inherited from the global Neumann-BC run, while the blue band shows the
locally refined posterior (mean and 95% credible interval) obtained from a Dirichlet-anchored
subdomain inversion. Together, these panels illustrate the posterior blending step: the coarse
results provide a globally consistent backbone, while the refined windows locally sharpen the
impedance estimate and its uncertainty without re-meshing the entire pipeline. The refined model
better matches the observed CIPS data in these regions and therefore yields a more informative
inference of the underlying coating impedance.
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Figure 6: Bayesian multilevel refinement of pipe—soil potential and coating impedance on 50 km
pipeline.

Overall, these results demonstrate that the Bayesian multilevel refinement framework can
efficiently recover a spatially resolved, uncertainty-aware estimate of coating impedance by
combining a coarse global backbone with targeted local refinement. By anchoring fine-scale
inversions to a physically consistent global TLM solution, the method preserves computational
tractability while enhancing sensitivity to localized coating degradation. The next critical step is
model validation by comparing the inferred impedance profiles against the true underlying
impedance. The Texas team has established a field testbed with ground-truth measurements,
which will be used in the coming quarter to rigorously validate and further calibrate the proposed
methodology.



Task 4: Procedure based on ECDA method.

External Corrosion Direct Assessment (ECDA), as described in NACE standard SP0502,
IS an organized process for characterizing and evaluating onshore steel pipeline systems. The
methodology is proposed to manage the risk of external corrosion failures in steel pipelines,
prioritize repair numbers and locations, and consequently maximize the integrity of the metallic
pipeline. The ECDA comprises four steps, namely: (1) pre-assessment, (2) indirect assessment, (3)
direct assessment, and (4) post-assessment.

The development of a field test to generate information to use for the developed algorithm and
integrate into an ECDA methodology.

We have 50ft of 4-inch bare steel pipeline buried in the ground. The pipeline is used for water
distribution, and the pipeline is located in Bryan, Texas. We design and set the conditions of the
pipeline to have CP system via galvanic anodes and also impress current.

There were three different sites to set up different conditions of the pipeline simulating defects or
heterogeneities at the soil/pipeline interface.

Once we collect the data, we will be able to run our current algorithm and establish more
quantitative criteria during the ECDA methodology. For example, we will be able to add some
quantitative characteristics for the first three steps.

Project Financial Activities Incurred during the Reporting Period:
Project Activities with Cost Share Partners:

During the ninth quarter of this project, we met several times (around seven) with the co-sharing
partners; we will organize a meeting at the beginning of 2026 for feedback on the new field-
controlled testing.

Financial Summary

e Federal Cost Activities:

Category Amount spent during Year 2
2024-2025
Personnel Salaries
Students (RA) $10,557
Benefits $1973
Tuition $7,228
Operating Expenses $1,171.00
Travel NA
Materials and Supplies NA
Miscellaneous NA
Indirect costs $6255
Total Costs $27,185.00
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Cost Share Activities:
o Cost share contribution:

Heuristech has contributed $28,200.00 in technology training and/or company personnel
hours for physical laboratory testing and mathematical tools.

Integrity Solutions has contributed $86,000 in CP field data collection, technical staff
resources to collect, collate, evaluate, screening, database development, attending
workshops and training, analyzing Cathodic Protection (CP) data, contributing to
computer algorithm development programming, and other program software/model
components.

Project Activities with External Partners:

We will organize a technical workshop with the team partners to get feedback on our
proposal concept.

We will organize different courses for pipeline companies, one of which will be integrity
and risk.

Educational Activities:

o Student mentoring:

We organize weekly meetings in the corrosion group for research updates and activities
performed. Each student is assigned a PhD student or a Postdoctoral Fellow to follow up
on the activities and discuss the results obtained. The students participate in the
laboratory activities and conferences (such as AMPP and TAMU internal conferences).

Dissemination of Project Outcomes:

We submitted two abstracts to the AMPP 2026 annual conference, and they were
accepted. We have one Research in Progress and one poster for the same conference.

Potential Project Risks:
Currently, there are no potential risks.

Future Project Work:

We anticipate following the proposed timeline with no current changes during the next months.
We will follow the Gantt chart to track progress and plan.

During the next 30, 60, and 90 days, we will perform task 1 activities. Additionally, we will
continue with Task 2,3, and 4 activities over the next 30, 60, and 90 days.

Theoretical work, field control work, and generated database analysis will be considered for the
next quarter.

e Include different surveys of the field pipeline with anomalies, including coating
defect activity and severity in the coating impedance model
e Continue validating the model with multiple sets of field data.
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The timeline and schedule for the project are in the Gantt chart.

Fiscal Year
Task/Subtask 2023 2024 2025 2025 | 2026 | 2026 | 2026

Q4 1Q11Q21Q3]Q4/Q11Q2/Q3| Q4 | Q1 | Q2 | Q3

Task 1: Designing and building the
physical prototypes in laboratory
conditions and deterministic
modeling

Task 2: Integrating field inspection,
theoretical, with experimental data by
applying pattern recognition
techniques relating the pipeline-
coating-soil system with CP

Task 3: Validation of the a priori
framework with experimental and
field conditions for
characterization/modeling and
Evaluation/Validation

Task 4: Development and validation
of the methodology for ECDA based
on CP levels

Deliverable Milestones are indicated in black*, and in dark green is the extended activities.

Potential Impacts to Pipeline Safety:

During the pipeline survey and Transmission Line Modeling, we validated the algorithms used
for Artificial Intelligence with the field database. The potential impact is the results generated for
the Al algorithm; the TLM is based on a deterministic and fundamental approach. This can not
only show different trends for a buried structure under cathodic protection but also include
several features in the RoW, resistivity, rectifier location, coating anomalies, and soil
characteristics. The rectifiers, anodic beds, soil compositions, current distribution, etc. The new
field testbed will simulate different controlled environments, this latter will be validated with the
theoretical algorithm based on TLM and Machine learning. Finally, the impact to Pipeline safety
with the new test bed or field-controlled environment testing and validation will help in the
sensitivity accuracy of the new developed methodology.
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