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Section A: Business and Activities  

(a) Contract Activities 

 Contract Modifications: NA 
 Educational Activities:  

o Student mentoring:  

Emad Farahani, a Ph.D. student in Civil, Construction and Environmental 
Engineering at Marquette University has been working on the project since the 
project was launched. 

Yuhan Su, a Ph.D. student in Chemical Engineering at The University of Akron is 
working on the project starting the 3rd quarter of this project. 

Abby Murray, an undergraduate student in Corrosion Engineering at The University 
of Akron has worked on the project from the 3rd quarter to the 7th quarter of this 
project. 

o Student internship: NA 

o Educational activities: 

The graduate student, Emad Farahani, participated 3-Minute Thesis competition at 
Marquette University and was listed as one of the top 10. 

The co-PI (Dr. Zhou) introduced the concept of cathodic protection in the 
undergraduate course—Introduction to Corrosion Science and Engineering at The 
University of Akron. 

o Career employed: NA 

o Others: NA 

 Dissemination of Project Outcomes:  
Oral presentation: “A Probabilistic Approach to Predicting External Corrosion Density 
in Buried Steel Transmission Pipelines Using MFL ILI Data”, AMPP, Nashville, TN, 
2025. 
 

 Citations of The Publications: NA 
 Others: NA 

(b) Financial Summary 

 Federal Cost Activities: 

o PI/Co-PIs/students involvement: 
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PI (Dr. Huang) and one graduate student (Emad Farahani) from Marquette 
University were charged from this project for the salary during this reporting period.  

o Materials purchased/travel/contractual (consultants/subcontractors):  

Subcontractor, University of Akron has worked on Task 3. 

InferModel as the hired consultant has helped on Task 2 (Data collection and 
analysis). 

 Cost Share Activities: 

o Cost share contribution: The cost share of Dr. Huang’s academic salary from 
Marquette University has been charged as planned. 

(c) Project Schedule Update 

 Project Schedule:  
Table A shows the original proposed schedule. 
 

Table A. Original schedule and milestones of proposed tasks 
Tasks Year 1 Year 2 Year 3 

Task 1. Literature Review               

Task 2. Data collection and analysis             

Task 3. Stray current corrosion             

Task 4. Probabilistic defect growth modeling             

Task 5. Time-dependent reliability             

Task 6. CP performance and management             

Final Report             

 
 Corrective Actions:  

Table B shows the updated research tasks. Task 1 took more time than originally 
planned, which was necessary to make sure the research team thoroughly understands 
the mechanics of cathodic protection systems, the current practice on external corrosion 
management, and state-of-art research that related to the project. Task 2 took more than 
the original planned as well due to the complexity and large size of the data types and 
the needed various data validations. Task 3 started a quarter later than the original plan. 
To improve model accuracy, various modeling approaches have been explored for Task 
4. Tasks 5 and 6 will formally start in Year 3, as the majority effort has been put in Task 
4 in Year 2. 
 

Table B. Updated schedule and milestones of proposed tasks 
Tasks Year 1 Year 2 Year 3 

Task 1. Literature Review               

Task 2. Data collection and analysis             

Task 3. Stray current corrosion             

Task 4. Probabilistic defect growth modeling             

Task 5. Time-dependent reliability             
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Task 6. CP performance and management             

Final Report             

 

(d) Status Update of the 8th Quarter Technical Activities 

 Task 3: Stray current corrosion (in progress) 
During the past quarter, the students conducted DC interference testing for X60 samples. 
The corrosion was measured by electrochemical testing and weight loss measurement.  
 

 Task 4: Probabilistic defect growth modeling (in progress) 

This task started in the 5th quarter. So far, we have conducted model development for 
corrosion defect occurrence, corrosion density, and area/volume growth. 

 Task 5: Time-dependent reliability analysis 

This task will start in the 9th quarter. 

 Task 6: CP performance and management 

This task will start in the 9th quarter. 
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Section B: Detailed Technical Results in the Report Period 

1. Background and Objectives in the 2nd Annual Report Period 

1.1. Background 

The purpose of this research project is to develop a novel reliability-based approach for 
assessing pipeline cathodic protection systems for the prevention of external corrosion. To 
develop a novel approach, a thorough literature review and data engineering initiative is 
required.  

Existing structural reliability frameworks on the corrosion response of inline inspections (ILI) 
detected anomalies have been reviewed. These frameworks apply effective area burst pressure 
estimations on corrosion clusters while explicitly accounting for material uncertainties, sizing 
uncertainties, model uncertainties and growth uncertainties. This leads to a burst pressure 
distribution that can be compared against an operating pressure distribution towards assessing 
pipeline reliability. These reliability assessments provide informative information around 
excavation decisions, re-inspection intervals, and can perhaps provide additional insights on 
decision making around corrosion prevention, especially around impressed current cathodic 
protection systems. These decisions can involve budget allocation around the replacement of 
anode beds, increasing rectifier currents, or performing Closed Interval Surveys (CIS) for more 
granular information around the effectiveness of cathodic protection systems.  

1.2. Objectives in the 2nd Annual Report Period 

During this reporting period, there are three main objectives:  

 Complete collecting and analyzing relevant data of transmission pipelines from 
industry partners 

 Review the past lab testing of samples under CP with DC inference  
 Model development of corrosion behavior using ILI data 

2. Task 2 Data Collection and Analysis 

All digitized closed interval survey (CIS) information has been integrated into the project 
dataset. This involved extracting survey information using regular expressions from 500 survey 
files, and correlating them to data quality excel sheets. From there, the spatial coordinates of the 
CIS were used to correlate measurements to the location on all applicable historical ILI 
inspections. Additionally, corrosion density measurements and maximum depth and growth rates 
have been correlated to CIS measurements for each ILI period. 

Climate data from the National Oceanic and Atmospheric Administration (NOAA) for the years 
2020 to 2023 has been correlated with each pipeline joint in this study, wherever available. Two 
distinct approaches were employed: 
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 Standard weather station correlation 
Pipeline joints were matched to the nearest weather station. 

 High-quality weather station correlation 
Pipeline joints were matched to the nearest high-quality USW weather stations (e.g., 
airports, large facilities) that provided more variables and consistent daily measurements. 

A total of 92 weather stations, including 22 high-quality stations, were utilized in this study. 
Using the collected data, the following environmental variables were derived for both 
approaches: Freeze-Thaw Cycle, Time of Wetness, Wet-Dry Cycle, Precipitation Over 1 Inch, 
Snow Days, Atmospheric Relative Humidity. 

Historical data on rectifier circuit resistances and resistivities were analyzed to develop a 
seasonal model error for all rectifiers used in this study. A normal distribution was identified as 
the best fit for the data, based on the lowest Akaike Information Criterion (AIC). Furthermore, 
rectifier circuit resistivities were compared with gSSURGO soil resistivities measured during the 
same year at varying distances from the rectifier locations. An order-of-magnitude comparison of 
soil resistivity data from different sources was performed using the Root Mean Square 
Logarithmic Error (RMSLE) to evaluate field versus estimated results. 

Finally, inferModel has further augmented the box-to-box matching used in this study, with an 
improved feature matching algorithm compared to the feature matching software used by the 
industry partner. 

3. Task 3 Corrosion Behavior Under Stray Current Interference 

3.1. Background and Objectives in the 2nd Annual Report Period 

The influence of AC interference is complex under different CP conditions and surrounding 
environments. The research team has obtained a good understanding of the key influencing 
factors in AC corrosion that contribute to CP effectiveness: AC current density, CP current 
density, and CP potential for a given metal in a soil environment, through a recently completed 
PHMSA CAAP project. In the meantime, it is known that DC interference cannot be ignored 
for pipelines under cathodic protection, especially for non-stationary dynamic DC interference. 
The objective of Task 3 in this reporting period is to design experiments to study metal 
corrosion under DC interference. 

3.2. Research Progress in the 2nd Annual Report Period  

a) Experimental design 

1) Materials 

Metal: API 5L X60 was purchased from the Metal Samples company. Its chemical 
composition is 0.15% C, 1.15% Mn, 0.009% P, 0.002% S, 0.25% Si, and balanced with Fe. 
Two types of metal testing coupons were prepared: the mounted coupon and the weight loss 
coupon.  
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The mounted metal coupons were used for electrochemical measurements, including 
potentiostat, galvanostat, potentiodynamic polarization, and electrochemical impedance 
spectroscopy (EIS). A copper wire was welded to the back of each cut metal sample to serve 
as the working electrode. Subsequently, the metals were meticulously sealed with epoxy, 
ensuring no grooves or bubbles at the epoxy/steel interface. To achieve a smooth and uniform 
surface, the mounted steel surfaces were polished using 240, 400, 600, 800, and 1200 grit 
sandpapers, resulting in a mirror-like finish free from scratches. The working area of each 
specimen was maintained at 2 cm2. 

The corrosion coupons, with dimensions of 3" × 0.5" × 0.063", were used for weight loss 
measurements. Before testing, the specimens underwent a thorough cleaning process using 
distilled water and acetone to ensure their cleanliness. 

Solution: The test solution used in this study was a simulated soil solution consisting of 8.933 
g/L KCl (99%), 0.674 g/L Na2SO4 (98%), and 5.510 g/L NaHCO3 (100%), with a pH of 8.35 
and a conductivity of 18.60 mS/cm. The testing solution was designed considering the major 
elements in soils and followed previous studies on the simulated solutions. All solutions were 
prepared from analytic-grade reagents and deionized water. All experiments were conducted 
at room temperature (~22°C) and open to air. 

2) Experimental setup 

The schematic diagram of the experimental setup is shown in Figure 1, including the CP 
protection circuit and DC interference circuit. In the CP protection circuit, CP potential is 
applied potentiostatically by Gamry Reference600 working station (#1) with a three-electrode 
system containing the steel specimen as working electrode (WE), a platinum sheet as counter 
electrode (CE), and a saturated calomel electrode (SCE) as reference electrode (RE). The CP 
potential for the DC interference study is designed to be -0.775 V vs. SCE and -1.12 V vs. 
SCE.  

In the DC interference circuit, the working station (#2) is used to apply DC interference 
between the metal specimen and the counter electrode. Various DC currents, i.e., 0.1, 1, 10 
A/m2, are applied by Gamry Reference 600 Chronopotentiometry mode. This design is to 
investigate the pulse DC interference rather than the stationary DC interference. Traction 
current can be divided into two parts based on the speed of the metro: variable speed and 
constant speed. The variable speed scenario occurs when the metro approaches the entrance 
and exits of a metro station. The constant speed situation refers to when the metro maintains a 
stable state during uniform operation. In the previous papers, the stationary wave, sinusoidal, 
triangular, and square forms were studied [1–6]. However, in the real world, the traction current 
is not symmetrical like studied before.  

Thus, Figure 2 shows the schematic representation of the rectangular wave signals considering 
pulse DC density to simulate the traction current generated by the metro movement in the real 
world. The variable speed to the whole speed period is planned to be 1:10, 1:2 (5:10), 9:10, 1 
(10:10). The variable speed was set as 12s. The durations were set to be 1 and 3 days.  
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Figure 1. Schematic diagram of the experimental setup of DC interference corrosion of X60 under cathodic 
protection. 

 

Figure. 2. Schematic representation of different DC current densities with an interference period of 1/10. 

 

3) Characterization methods 

In this experiment, Tafel testing and weight loss measurement are scheduled to determine the 
corrosion rate of X60 under various DC interference and CP potential conditions. Mounted 
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metal coupons are employed for the Tafel test, and corrosion coupons are used for weight loss 
measurement. Figure 3 shows the experimental protocol to investigate the DC interference 
corrosion. The initial pH and the open circuit potential (OCP) of the metal are tested before 
the application of DC interference and CP potential. Following the predefined time period, 
EIS, Tafel, and morphology tests are carried out to evaluate corrosion. 

 

Figure 3. Experimental protocol for the study of DC interference corrosion.  

 

b) Results and Discussion 

1) Weight loss of X60 under different DC interference without CP 

So far, the DC interference corrosion of X60 steel has been studied at three DC interference 
levels (0, 0.1, 1, 10 A/m2), and different interference periods (IP) (0, 1/10, 5/10, 9/10, 1), by 
weight loss measurement for three days of immersion. Some data points are in progress under 
the weight loss testing.  

Figure 4 shows the corrosion rate of X60 under different DC current densities and interference 
periods in units of mpy. Their corresponding surface morphology after chemical cleaning is 
presented in Figure 5. It is observed that the corrosion rate increased with an increase in the 
interference period. The largest value occurred when the interference period reached 1. Based 
on the surface morphology, no obvious pitting was observed on the surface. Thus, DC 
interference resulted in uniform corrosion based on weight loss measurement. 
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Figure 4. Corrosion rate (mpy) of X60 under different DC current density and interference periods.  

 

Figure 5. Surface morphology of weight loss coupons after chemical cleaning, following ASTM G1 standards.  

 

2) DC potential monitoring and EIS measurement 

The DC potential monitoring of X60 steel under DC current density of 0.1 A/m2 and 
interference period (IP) of 1/10 is shown in Figure 6a. Curves of rainbow colors correspond to 
measurements at different time periods (0.5h, 1h, 3h, 6h, 12h, 12.5h, 15h). DC potential is the 
feedback of the applied DC current density. Due to the interference period, the DC potential 
has the shape of a peak and valley, corresponding to the feedback of the variable speed and 
constant speed of the applied DC current during the whole process, respectively. The valley 
potential gradually shifted negatively from –0.8228 V vs. SCE (0.5h) to –0.8439 V vs. SCE 
(3.5h), then positively to –0.8149 V vs. SCE (15h). The valley potential at 15 h was even higher 
than the valley potential of the first half hour (0.5h). The increase in the DC valley potential 
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after 3.5h indicates that the corrosion product starts to inhibit oxygen diffusion to the metal 
surface after 3.5h [7]. The continued positive shift of the DC valley potential indicates that the 
corrosion product continues to accumulate at the metal surface.  

Figure 6b shows the Nyquist plot of electrochemical impedance recorded under a direct current 
(DC) density of 0.1A/m2 with IP of 1/10 at different exposure times (0.5h, 1h, 3h, 6h, 12h, 
15h). Each curve exhibits a semicircular arc, a signature of charge-transfer-controlled 
processes at the electrode/electrolyte interface, which reflects the resistance to electron transfer 
during redox reactions. The semicircle decreased at 3.5h, then increased, indicating the charge-
transfer resistance (Rct) became smaller in the first 3.5h, then became bigger. A similar trend 
was found in the DC potential change (Figure 6a). Both of the testing methods identified a shift 
point during the corrosion, which demonstrated the starting point of the corrosion product 
accumulation that inhibited oxygen diffusion. 

  
(a) (b) 

Figure 6. (a) DC potential monitoring and (b) EIS Nyquist plot of X60 under DC current density of 0.1 A/m2 
and interference period of 1/10 under different time periods. 

The DC potential monitoring of X60 steel under DC current density of 1A/m2 and interference 
period (IP) of 1/10 under different time periods is shown in Figure 7a. The valley potential 
gradually shifted negatively from –0.8292 V vs. SCE (0.5h) to –0.8404 V vs. SCE (2h), then 
positively to –0.8140 V vs. SCE (10h). This shift indicates that the corrosion product continues 
to accumulate at the metal surface, and the corrosion product starts to inhibit the oxygen 
diffusion to the metal surface after 2h, which is faster than the X60 under a DC current density 
of 0.1 A/m2. This confirms that higher DC current density accelerates the accumulation of the 
corrosion product.  

Figure 7b shows the EIS Nyquist plot of X60 steel under a direct current (DC) density of 1 
A/m2 with IP of 1/10 at different exposure times (0.5h, 2h, 5h, 10h). The semicircle decreased 
at 2h, then increased, indicating the charge-transfer resistance (Rct) became smaller in the first 
2h, then became bigger. Furthermore, this shift point from EIS is consistent with the one 
identified from DC potential, which confirms that higher DC current density accelerates the 
corrosion production accumulation.  
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(a) (b) 

Figure 7. (a) DC potential monitoring and (b) EIS Nyquist plot of X60 under DC current density of 1 A/m2 and 
interference period of 1/10 under different time periods. 

3) Tafel testing of X60 under DC interference without CP 

Figure 8 shows the Tafel plot for X60 steel under a 1:10 interference period, different DC 
interference: a) 0.1 A/m2; b) 1 A/m2; c) 10 A/m2, and different durations (1 day and 3 days). 
The corrosion current and the corrosion potential increased with time.  

 

Figure 8. Tafel plot of X60 under DC current density of a) 0.1 A/m2, b) 1 A/m2, and c) 10 A/m2, and 
interference period of 1/10 under different durations. 

Figure 9 shows the surface morphology of X60 under 1/10 interference period, different DC 
interference, and durations. Under a low current density of 0.1 A/m2, the surface appeared dark 
gray, with a uniform and dense texture after 1 day. After 3 days, the surface turned tan, 
remaining relatively uniform overall. Under a medium current density of 1 A/m2, the surface 
became rougher, indicating enhanced reaction activity under the medium current, with reaction 
products starting to accumulate on the surface after 1 day. After 3 days, yellow spots appeared, 
with abrupt color changes in local areas. It demonstrates that under long-term medium current, 
local degradation occurred on the electrode surface. Under a high current density of 10 A/m2, 
the surface was mottled with dense holes, and a yellowish corrosion zone appeared at the edge 
after 1 day. After 3 days, layered corrosion appeared, and it was easy to spall. In conclusion, 
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the higher the current density and the longer the action time, the more severe the 
electrochemical damage on the electrode surface. 

 

Figure 9. Surface morphology of X60 under different DC current densities and 1/10 interference period with 
different durations.  

3.3. Conclusions 

The experimental design and testing protocols for investigating metal corrosion under DC 
interference with cathodic protection have been established. The corrosion under DC 
interference with different DC current densities and interference periods has been studied by 
weight loss measurement and electrochemical characterizations. A systematic study will be 
continued to know the whole picture of the DC interference corrosion.  

4. Task 4 Probabilistic defect growth modeling 

4.1. Background and Objectives in the 2nd Annual Report Period 

Developing a reliable probabilistic predictive corrosion growth model is critical to estimate 
time-dependent reliability of a pipeline. Specifically, the explanatory variables (e.g., CP 
current density, soil properties, coating types, season effect) will be explicitly incorporated, 
such that the “root cause” of corrosion can be identified. 

The corrosion evaluation is modeled through four different responses: corrosion occurrence, 
corrosion density growth, defect area/volume growth, and defect depth/length growth. This 
report period focused on the modeling of the first three responses. 

4.2. Research Progress in the 2nd Annual Report Period 
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4.2.1. Prediction modeling on corrosion occurrence on a pipe joint 

In this section, the effect of all influencing factors on the occurrence of corrosion on pipe joints 
are evaluated. Specifically, logistic regression analysis is carried out to develop a predictive 
model to predict the probability of corrosion occurrence within a pipe joint given the 
influencing factors. Such a model would help operators better understand and manage their 
assets and plan future in-line inspections more efficiently. 

A subset of available pipe joints is selected where no corrosion was detected on the entire joint 
in the 1st inspection. These pipe joints are classified into two groups based on whether defects 
were detected in the 2nd inspection or not. If defects are detected in the 2nd inspection with a 
joint, the joint is labelled as Class 1, otherwise, it is labelled as Class 0. Therefore, binary 
logistic regression analysis is used to develop a model which predicts the probability of a pipe 
joint having corrosion in the next inspection given no corrosion in the 1st ILI. Undersampling 
technique was utilized so the total number of observations per Class is the same, and balanced 
dataset is used for model development purposes. Totally, 1,101 observations were used for 
each Class, results in 2,202 observations for both classes combined. Overall, 22 unique 
variables were currently used in the developed logistic model, and a detailed investigation on 
their “importance” and contribution on the accuracy of the model is ongoing. 

Figure 10 shows the distribution of the predicted probability of having defects in the 2nd 
inspection obtained from the developed logistic model for two pipelines considered. A perfect 
model would predict probability values of 1 and 0 for Class 1 and Class 0, respectively. As 
shown in Figure 10, a clear distinction between the distribution of probabilities for Class 1 and 
Class 0, i.e., the bule and red distributions, is shown. In particular, the majority of probability 
values are closer to 1 for Class 1 and the majority of probability values are closer to 0 for Class 
0, signifying the good performance of the developed predicted model. 

 

(a) Pipeline 1                                            (b) Pipeline 2 

 

Class 1 
 

Class 0 
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Figure 10. Predicted probability of having defect in the 2nd inspection  

To check if the model prediction is biased (that is, the model is predicting one class with better 
accuracy than the other), the Root Mean Squared Error (RMSE) and Mean Absolute Error 
(MAE) values are calculated using: the ideal probability values, Pi,ideal (i.e., Pi,ideal = 0 and 1 for 
Class 0 and Class 1 respectively), and the predicted probability values using the developed 
model, Pi,precicted, by: 

2
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i predicted i ideal
i

RMSE P P
n 

   

, ,
1

1 n

i predicted i ideal
i
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n 

   

(1) 

Table 1 summarizes these two performance metrics for each class. As shown, the RMSE and 
MAE values are very close for Class 0 and 1, meaning that the model is not predicting the 
probability values in a biased manner and in favor of one class, and the performance is 
comparable for both classes. 

Table 1. Performance of the logistic regression model considering both classes 

Class Probability RMSE  Probability MAE 

0 0.402 0.314 

1 0.388 0.314 

The predicted probability values shown in Figure 11 can be assigned to Class 0 and 1 by using 
a threshold value. A commonly used threshold value for classification is 0.5, as such the 
probability values in ranges (0, 0.5) and (0.5, 1) being classified as Class 0 and Class 1, 
respectively. Consequently, the accuracy of the predicted model can be quantified. Figure 11 
shows the Receiver Operating Characteristic (ROC) curve for the developed model, which is 
a graphical representation used to evaluate the performance of a binary classification model. It 
shows the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) values at 
various threshold assumptions. A perfect model would result in an ROC curve passing through 
the top-left corner, i.e., TPR = 1 and FPR = 0. The threshold value can be selected subjectively, 
depending on whether higher TPR or lower FPR is desirable. For example, three threshold 
values, T, are shown on Figure 11, where threshold of 0.3 results in higher TPR and higher 
FPR while a threshold of 0.7 results in lower TPR and FPR. 
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Figure 11. Predicted probability of having defect in the 2nd inspection 

The Area Under the Curve (AUC) also quantifies the model performance without setting a 
specific threshold, with a perfect model having AUC = 1. Generally, the higher AUC, the better 
the model performance. The AUC of this model is calculated to be 0.853 which is considered 
to be very good, given a balanced (unbiased) dataset of observations is used for model 
development. 

Furthermore, Table 2 summarizes the values of common performance metrics of the developed 
logistic model, and their definitions are: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) (2) 

Sensitivity = TPR = TP / (TP + FN) (3) 

Specificity = 1- FPR = TN / (TN + FP) (4) 

Precision = TP / (TP + FP) (5) 

F1 = 2 × Precision × Sensitivity / (Precision + Sensitivity) (6) 

where TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative. In 
Table 2, these values of these metrics are obtained by applying a threshold value of 0.5 to the 
prediction model, all of which are above 0.75, implying the good performance of the developed 
model. In addition, the confusion matrix of the developed model is shown in Table 3, 
considering the threshold of 0.5. It shows that 77.8% and 74.8% are correctly classified for 
actual Class 1 and Class 0, respectively.  

 

T = 0.5 

T = 0.7 

T = 0.3 
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Table 2. The values of performance metrics of the developed logistic model 

Accuracy TPR 1- FPR F1 

0.76 0.78 0.75 0.77 

 

Table 3. Confusion matrix of the developed logistic model considering threshold of 0.5 

  Predicted Class 
  0 1 

Actual 
Class 

1 
244 

(22.2%) 
857 

(77.8%) 

0 
824 

(74.8%) 
277 

(25.2%) 

 

Test Data Error 

As an established assumption in Statistics, cross validation error is considered an unbiased 
estimate of the error the developed model will have on new, unseen data. Table 4 and 5 
summarize respectively the performance metrics and confusion matrix using a 5-fold Cross 
Validation (CV) technique. In this technique the data is divided into five equal subsets, each 
subset is used once as the test set while the model is trained on the remaining four, and the 
results are averaged. As can be seen, the metrics and accuracy are comparable to those 
mentioned in Tables 2 and 3. Therefore, it is concluded that the developed model is expected 
to perform on unseen data as well as it does on the training data. 

Table 4. The values of performance metrics using 5-fold cross validation 

Accuracy TPR 1-FPR ROC 

0.73 0.81 0.75 0.82 

 

Table 5. Confusion matrix using 5-fold cross validation considering threshold of 0.5 

  Predicted Class 
  0 1 

Actual 
Class 

1 24.8% 75.2% 
0 70.8% 29.2% 

 

4.2.2. Prediction modeling on corrosion density 

A time-dependent probabilistic modeling framework has been developed to predict actual 
external corrosion density in the pipelines using ILI data. The results are compared with a 
traditional approach of estimating density used by pipeline operators and also with a time-
independent model proposed by Stephen and Nessim (2009). An oral presentation was given 
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to present the results in AMPP 2025 Conference in Nashville, TN, in April 2025. This 
probabilistic modeling framework involves two parameters, λ and t0. Optimization was 
performed to estimate these model parameters through Maximum Likelihood method using 
real data from 4 in-line inspections of two in-service steel pipelines. Overall, 7,939 
observations are available. 

In this report timeframe, relationship between these two parameters and available 
environmental and CP variables was investigated in an effort to predict these model parameters 
using explanatory variables. Two methods were investigated. In Method 1, model parameters 
are considered as continuous responses; in Method 2, model parameters are treated as 
categorical response in which the goal is to predict the levels of parameters, for example to 
predict whether λ is High or Low using classification algorithms. 

Method 1: model parameter as continuous response 

It was found that when the model parameters are considered as continuous responses there is 
no strong correlation between the response and predictors, leading to poor performance 
accuracy. A linear regression was performed considering the interaction between variables, 
and also other advanced machine learning (ML) algorithms, including Gaussian Process 
Regression and Neural Network, were investigated. To estimate the test data error, CV (Cross 
Validation) approach was implemented. Although advanced ML models generally provide 
high prediction accuracy for the training data, their performance significantly reduce when it 
comes to test data error, because of overfitting. Table 6 summarizes the performance metric 
for the linear regression model and the advanced model with the best performance in terms of 
5-fold CV R2. As shown, there is not strong relationship between the continuous responses and 
available predictors. Also, it was observed that the performance of advanced models is not 
significantly better than Linear Regression model when considering the test data error.  

Table 6. Performance metrics of developed models with model parameters as continuous responses 

Continuous 
Response 

Linear regression R2 
Best advanced 
model 5-CV R2 

λ 0.076 0.084 

t0 0.041 0.181 

 

Method 2: model parameter as categorical response 

In this method, the model parameter λ is classified into two levels (i.e., High or Low) 
considering a threshold value. Thus, the model is developed to predict given a set of 
explanatory variables whether λ is High or Low. This could help pipeline operators to prioritize 
the inspection of joints where the corrosion density growth rate (λ) is High. Considering a 
typical joint pipe length is 40 ft, the threshold value considered is the density growth of 1 defect 
per 40 ft of joint per year.  

Figure 12 show the growth of density (i.e., number of defects per pipe joint length) predicted 
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by the optimization framework developed in this research for selected pipe joints. The black 
line refers to the threshold value density growth rate of 1 defect/40 ft/year, which classifies the 
growth rates into two separate classes and therefore is used herein. Totally, 2,901 observations 
were used for each Class, results in 5,802 observations for both classes combined. A binary 
logistic regression is performed to predict the actual class, i.e., High or Low, of density growth 
using explanatory variables.  

 

Figure 12 Density growth over time for selected pipe joints 

Figure 13 shows the distribution of the predicted probability of having High density growth 
obtained from the developed logistic model for pipe joints considered. A perfect model would 
predict probability values of 1 and 0 for Class High and Class Low, respectively. As shown in 
Figure 13, a clear distinction between the distribution of probabilities for Class High and Class 
Low, i.e., the bule and red distributions, is shown. In particular, the majority of probability 
values are closer to 1 for Class High and the majority of probability values are closer to 0 for 
Class Low, signifying decent performance of the developed predicted model. 
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Figure 13 Predicted probability of having High density growth  

The predicted probability values shown in Figure 13 can be assigned to Class Low and High 
by using a threshold value. A commonly used threshold value for classification is 0.5, as such 
the calculated probability values in ranges (0, 0.5) and (0.5, 1) are classified as Class Low and 
Class High, respectively. Consequently, the accuracy of the predicted model can be quantified. 
Figure 14 shows the Receiver Operating Characteristic (ROC) curve for the developed model, 
which is a graphical representation used to evaluate the performance of a binary classification 
model. It shows the trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) 
values at various threshold assumptions. A perfect model would result in an ROC curve passing 
through the top-left corner, i.e., TPR = 1 and FPR = 0. The threshold value can be selected 
subjectively, depending on whether higher TPR or lower FPR is desirable. For example, three 
threshold values, T, are shown on Figure 14, where threshold of 0.3 results in higher TPR and 
higher FPR while a threshold of 0.7 results in lower TPR and FPR. 
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Figure 12 Predicted probability of having High density growth 

The Area Under the Curve (AUC) also quantifies the model performance without setting a 
specific threshold, with a perfect model having AUC = 1. Generally, the higher AUC, the better 
the model performance. The AUC of this model is calculated to be 0.649 which is considered 
to be acceptable, given a balanced (unbiased) dataset of observations is used for the model 
development. 

In addition to binary classification, a three-level classification and other advanced ML 
classification models were developed to compare with the performance of the binary 
classification developed earlier. Five-fold cross validation accuracy is used as the performance 
metric and Table 7 summarizes these values for the developed binary logistic regression, the 
best advanced model considering 2 and 3 classes. Although multi-level logistic regression and 
advanced algorithms might have higher accuracy when training data is concerned, their 
performance, as shown in Table 7, is not higher than binary logistic regression because they 
tend to overfit the model based on training data. 

Table 7 Performance metrics of developed models with model parameters as categorical responses 

Categorical Response 
Developed Logistic Regression CV 

Accuracy 
Best advanced ML model CV 

Accuracy 

λ (2 Classes: High or Low) 61% 63% 

λ (3 Classes: High or Medium or Low) - 45% 

4.2.3. Corrosion surface area and volume growth  

The measurement error of ILI devices and their effect on the calculated external corrosion 
defect area and volume are considered. According to ILI tool specifications provided by 
vendors, accuracy of the utilized tools is provided given morphology of an anomaly. For 
example, depth measurement accuracy is given in terms of 80% confidence interval of x% of 

T = 0.5 

T = 0.3 

T = 0.7 
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the wall thickness. This means that depth measurement is uncertain and there is an 80% chance 
that the true depth is within the measured depth ±x% of wall thickness. From this information, 
the uncertainty, i.e., standard deviation, of the measured depth can be obtained by assuming a 
distribution (e.g., Normal distribution). The measurement error for length or width, however, 
is usually given in terms of millimeter of the additive sizing error. 

The uncertainty in depth, width, and length measurements should be propagated into the 
calculated area and volume of defects. One could adopt the first-order Taylor expansion to 
linearize the area and volume functions for simple calculation of the standard deviation of the 
functions. As an example, Eq. (7) shows the linearization of a function f(x1, x2, x3), using the 
first-order Taylor expansion around the point a1, a2, a3: 

3

1 2 3 1 2 3 1 2 3
1

( , , ) ( , , ) ( , , ) ( )i i
i i

f
f x x x f a a a a a a x a

x


   

  (7) 

where 1 2 3( , , )
i

f
a a a

x




is the partial derivative of f with respect to xi evaluated at a1, a2, a3. 

To linearize the area function, A, which is the product of width, W, and length, L, using the 
Taylor series expansion around the mean values of W and L, i.e., μW and μL, the above equation 
is used as follows: 

( , ) ( ) ( )W L L W W L W L W LA W L f W W L W                       (8) 

Therefore, the mean and standard deviation of area, i.e., μA and σW, assuming Normal 
distribution for width and length and independence of W and L, is obtained as follows: 

A W L     

2 2 2 2
A W L L W         

(9) 

After estimating the uncertainty of the calculated area (or volume) of defects over different 
ILIs, the probability of area (or volume) positive growth over time can be estimated using: 

    2 1

2 1

2 1 2 2
 A A

A A

P Positve Growth P A A
 

 

     
  

 (10) 

Figure 15 shows the probability that the actual area of defects detected in the second ILI, A2, 
of a pipe joint is greater than that in the first ILI, A1, i.e., P(Postive area growth), when all the 
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single metal loss (SML) and child features of a pipe joint are considered. 
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Figure 15. Probability of positive area growth over time 

As shown in Figure 15, since Normal distributions are assumed for A1 and A2, for the joints 
where the measured A2 is greater than the measured A1, i.e., 

2 1A A  , P(Positive Growth) 

lies in between 0.5 and 1, depending on the A1 and A2 distribution parameters. That is, when 

2 1A A  , the P(Positive Growth) can sometimes be as low as 0.5, as opposed to the 

deterministic evaluation with no consideration of measurement errors resulting in 100% of 
positive growth. On the other hand, when 

2 1A A  , the P(Positive Growth) can sometimes 

be as high as 0.5, while in the deterministic evaluation it would be considered as 100% negative 
growth. This result shows the importance of considering ILI measurement error and 
probabilistic evaluation when evaluating the growth of area of defects within a joint over time. 

In addition, using the same dataset as Figure 15, Figure 16 shows for higher values of mean 
area ratio, i.e., 

2 1
/A A  , the probability of actual positive area growth over time, i.e., 

P(Positive Growth), is generally higher. However, the correlation is not always linear, as it 
depends on number of defects within a joint, Probability of Detection (POD), and sizing error. 
It is noted that in theory where 

2 1A A  , P(Positive Growth) = 0.5. Moreover, Figure 16 

below shows the effect of considering POD on P(Positive Growth) to be insignificant. 
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Figure 16. Probability of positive area growth over time versus mean area ratio 

 

4.3. Conclusions 

The corrosion evaluation can be described using different quantities. In this task, modeling 
efforts have been made on predicting probability of corrosion occurrence, corrosion density, 
and corrosion surface area/volume growth. Using logistic regression, the correlation between 
probability of corrosion occurrence and explanatory variables is found. The corrosion density 
is modelled using a passion process considering probability of detection, however, the 
correlation between the model parameters and the explanatory variables is found to be weak. 
In addition, the measurement error in the ILI tools are successfully incorporated into the defect 
surface area/volume growth. 

5. Future work 

For Task 3, the corrosion of X60 under different DC interference and CP protection will be 
investigated. A systematic study with different DC current densities and interference periods 
will be continued by electrochemical characterizations and weight loss measurements.  

For Task 4, efforts will be made to investigate possible improvement in the accuracy of the 
corrosion density model. Sensitivity analysis will be conducted for the developed models for 
predicting probability of corrosion occurrence and corrosion density. Lastly, probabilistic 
models will be developed for defect depth and length growth.  
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