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Section A: Business and Activities

(a) Contract Activities

Contract Modifications:

No contract modifications have been considered or executed during the second year.
Educational Activities:

o Student mentoring:

We organize weekly meetings in the corrosion group for research updates and activities
performed. Each student is assigned a PhD student or a Postdoctoral Fellow to follow up

on the activities and discuss the results obtained. The students participate in the
laboratory activities and conferences (such as AMPP and TAMU internal conferences).

Personalized mentoring with a PhD student or Postdoctoral Fellow to follow up on the
student's activities and discuss the results.

o Student internship:
Nothing to report
o Educational activities:
We organized an industrial course, Fundamentals, Experiments, and Applications in
Corrosion, one of the chapters of which was related to corrosion in pipelines. The course
has been offered since 2022.
o Career employed:
Nothing to report

Dissemination of Project Outcomes:

We submitted two abstracts to the AMPP 2026 annual conference, and they were
accepted. We have one Research in Progress and one poster for the same conference.

We presented an oral work at Eurocorr 2026 in Norway. We have one PhD thesis that
was defended in July 2025.

Citations of The Publications:
Reece Goldsberry and Homero Castaneda, Characterization and Potential Distribution
Mapping of Cathodically Protected Buried Pipelines based on Homogeneous and

Heterogeneous Factors, Journal of Pipeline Science and Engineering,
https://doi.org/10.1016/j.jpse.2025.100350,
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https://doi.org/10.1016/j.jpse.2025.100350

e Patent Disclosure

Tl Ref. & Title: 6853TEES25- Multi-Scale FEM Electrochemical Model based on

Transmission Line Theory

Inventor(s): Reece Goldsberry, Homero Castaneda-Lopez

(b) Financial Summary

e Federal Cost Activities:

Category Amount spent during Year 2
2024-2025
Personnel $16,404.02
Faculty $33,364.07
PosDoc NA
Students (RA) $649.00
Benefits $9,271.16
Operating Expenses $518.00
Travel $493.96
Materials and Supplies $300.43
Miscellaneous $14,001.53
Subcontracts $38,857.60
Indirect costs $32,025.33
Total Costs $145,885.10

e Cost Share Activities:

o Cost share contribution:

e Heuristech has contributed $28,200.00 in technology training and/or company personnel
hours for physical laboratory testing and mathematical tools.

e Integrity Solutions has contributed $86,000 in CP field data collection, technical staff
resources to collect, collate, evaluate, screening, database development, attending
workshops and training, analyzing Cathodic Protection (CP) data, contributing to
computer algorithm development programming, and other program software/model
components.

e The University of Dayton has contributed $38,283.38 in cost share, $25,437.46 in faculty
payroll and $12,845.92 in indirect costs.

(c) Project Schedule Update

e Project Schedule:



Table 1. Timeline and schedule for the project in Gantt chart.

Task/Subtask
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Task 1: Designing and building the
physical prototypes in laboratory
conditions and deterministic modeling

Task 2: Integrating field inspection,
theoretical with experimental data by
applying pattern recognition techniques
relating the pipeline-coating-soil system
with CP

Task 3: Validation of the a priori
framework with experimental and field
conditions for characterization/modeling
and Evaluate/Validate

Task 4: Development and validation of
the methodology for ECDA based on CP
levels

Deliverable Milestones are indicated in black*

e Corrective Actions:

We have been working on the field testing validation planning during the last quarter,
and we will use some pipelines located in the RELLIS campus at Texas A&M. We have
two PhD graduates involved in this task.

Task Risk | Priority Risk Impact Summary Response Strategy
Description

Select different | Mediumto | -Not finding and Identification of pipelines Risk Avoidance

pipelines for High using the that will allow us to validate

validation of selected the Methodology. RELLIS campus

the pipelines due to administration will allow the
Methodology. logistics use of the facilities with a
Task 4 proposal.




Section B: Detailed Technical Results in the Report Period

1. Background and Objectives in the 2" Annual Report Period

Background

Over the past year, we refined the deterministic model based on TLM, which can characterize,
quantify, and assess various components of the cathodic protection system. The development
of the TLM has become the keystone of the theoretical/experimental/field platform. Different
features were added to the TLM-based model to identify low-impedance sites. The TLM model
was validated with different field data from different ROW,; the validation included the
recognition of low impedance sites (rectifiers, anodic bed, coatings holidays). This
characterization serves as the baseline for the selected ROW. The TLM model was able to
reconcile the laboratory results with the theoretical prediction. A multiscale approach was used
in the lab to validate the TLM at the small or micron scale and the laboratory or cm scale. The
integration of the laboratory results with the TLM leads the pathway to integration on a macro
scale.

A critical step in clustering analysis is determining the optimal number of clusters for a given
dataset. Since clustering techniques rely on different data properties, various measures have
been proposed to identify the best fit. During this period, we developed advanced methods for
analyzing measured cathodic protection (CP) potentials. The CP potential data obtained from
a close interval survey (CIS) for the specified region were visualized. Additionally, the metal
loss depth, as estimated using an inline inspection (ILI) survey, is aligned with the CP potential
data and overlaid for comparison. The analysis reveals a potential correlation between soil
heterogeneity and regions of significant metal loss, highlighting the importance of
understanding the relationship between soil properties and pipeline integrity. In the last quarter,
we were able to integrate clustering and machine learning with the TLM. Finally, the validation
of the developed methodology based on ECDA for assessing the cathodic protection will be
performed in two ways: the current database for different ROW, and with an existing pipeline.
The team found a steel pipeline located at the RELLIS campus of Texas A&M University.

Obijectives in the Annual Report Period

OBJECTIVES

The herein proposal includes the following objectives:

e Develop a unique experimental-mathematical modeling platform with field data-driven
that will serve as an external corrosion assessment tool for the identification and
quantification of CP effectiveness.

¢ Reduce the likelihood of incidents related to failures caused by corrosion, thus boosting
the overall integrity of pipeline systems,

e Enhance the identification, quantification, and assessment of anomalies, elements of the
pipeline, and CP elements via deterministic, data-driven, and artificial intelligence.

e Perform standard measurement pipeline monitoring techniques for validation of a

developed CP model



2. Theoretical and Experimental Program in the Annual Report Period
2.1 Theoretical Deterministic Model Based on Transmission Line Theory

In continued efforts to create a deterministic model for modeling the potential distribution in
cathodically protected pipelines, validation was performed both on the lab and field scale.
Validation on the lab scale was continued by comparing the output of the 2D TLM using
mechanistic definitions for the interface impedance with experimental data. To begin validating
the model in the larger field scale, the initial model was extended to a quasi-1D case where the x-
direction of the model (length of the pipeline) is on the order of kilometers while the y-direction
(circumference of the pipeline) is on the order of meters. After validation, the model was then
extended to be able to accurately simulate the potential distribution under more complex and
dynamic conditions. Key enhancements include the incorporation of temporal variations in soil
regime based on seasonal shifts, the multi-scale modeling of electrical bonding between pipelines,
and localized interfacial impedance adjustments based on defects present in the coating. These
local simulations enable multiscale features to be integrated within a coarser global framework for
enhanced physical accuracy and real-world applicability.

Theoretical Deterministic Model coupled with the Machine Learning model Framework

The transmission-line model (TLM) was developed by the Texas A&M team to numerically
compute the potential distribution along the soil-pipeline interface, taking into account the spatial
heterogeneity. However, variability in soil resistivity, coating impedance, and other environmental
factors introduces uncertainty that purely physics-based models cannot fully capture. To address
this, we developed and implemented a physics-informed and uncertainty-aware Bayesian digital
twin for pipeline external corrosion assessment, which couples a physics-based transmission-line
model (TLM) with a Bayesian probabilistic updating framework. By integrating high-fidelity
numerical simulation of the pipeline-soil interface with probabilistic inference, the digital twin
yields spatially resolved predictions of coating interfacial impedance and assesses cathodic
protection (CP) effectiveness, along with quantified uncertainty. The proposed approach, as shown
in Figure 1, enhances traditional external corrosion direct assessment (ECDA) by accounting for
heterogeneous soil and coating properties, enabling more reliable severity estimates and informed
maintenance planning.
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Figure 1: Proposed framework for Bayesian Transmission Line Model

2. 2 Experimental Plan

Continued laboratory testing involves validating a deterministic model for cathodic
protection (CP) systems through two distinct laboratory-scale experiments, aiming to extend the
model's accuracy across multiple length scales and extend to two dimensions. The first validation
case (Figure 2) focuses on measuring the two-dimensional potential distribution in a scaled-down
system that incorporates real-world complexities like electrical bonding between pipelines,
complex geometries, and external AC/DC interferences. This setup uses carbon steel pipes with
Fusion-Bonded Epoxy (FBE) coating buried in soil. The second validation case (Figure 3)
investigates the impact of CP polarization on the degradation of applied coatings. Coated panels
will be exposed to environmental factors, either under CP or natural aging, and their resulting
electrochemical properties will be measured using Electrochemical Impedance Spectroscopy
(EIS). The data from both cases will be used to refine the model, especially by defining the
interfacial impedance for aged coatings, ultimately building confidence in the model's ability to
simulate real-world CP systems.
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Figure 2: a) Numerical simulation of a two-dimensional potential distribution for an arbitrary
pipeline network with singular anode placement, and b) Small-scale physical model of pipeline
network
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Figure 3: Physical setup for testing the effectiveness of CP on aged coating panels
Theoretical Deterministic Model
2.3 Theoretical, experimental, and field implications of Interfacial Impedance

Both mechanistic and traditional electrical equivalent circuit (EEC) definitions can be used when
defining the interfacial impedance in the TLM Potential Distribution model. A summary of the
EEC definitions and mechanistic definitions is shown in Tables 1 and 2, respectively.

Table 1: Traditional EEC Definitions

Electrical Element

Impedance Form

Use

R Zr =R Charge Transfer Processes
1 .
C Zp=—— Capacitive Processes
iwC




1 Capacitive Processes with assumed

CPE Zcpe = (iw)"Q heterogeneities at the interface
Warburg _ . N-1/2 Diffusion Processes
Impedance?!-2 Zw = oy (iw)
Table 2: Mechanistic Impedance Definitions
Mechanism Impedance Form
. . €o€rA
Coating Capacitance: Ideal Cc = -
e 2 1+ iwtexp(— #)
- itance: Z(w) =6———- n :
Coating Capacitance: Double 1+iwT iweye 1+ iwT
Layer34567 T
T = €o€rPc
. . t
Coating Resistance Rc = %
w=(Gran)
a Cy  Cairy
. = €
"™ 4nd
Double Layer Capacitance® L
ziF1, 2
Qa=- [ZERTZ i (exP( RT ) B 1)]
dQq
Coivp = ———
dif f dlpo
i = igexp(b(E — Ey))
i=1bE
Charge Transfer Resistance I =iyexp(b(E — Ey))

R_E_1
“=\i) i-b
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3. Results and Discussions

Task 1: Designing and building the physical prototypes in laboratory conditions and deterministic
modeling

Validation of TLM Potential Distribution Model
Verification with Analytical Solution

Firstly, the model’s output was compared with commonly used analytical solutions for
describing the potential decay seen in cathodically protected pipelines. Equations 1 — 4 are used
to calculate the potential decay for an infinite or finite pipeline with a length of 21 respectively®
11 The ending boundary condition infinite pipeline was such that as the pipeline went to infinity
eventually the assumed potential would be equal to zero and for the finite pipeline at the end of
the pipeline (x = 1) the potential is equal to E,,, or more simply it could be assumed that the
current will be zero (dE/dx = 0).

Eing = Ege™ 1)

Efin = Emcosh(a(l — x)) @)
« = JRJR. 3)

E, = E,,cosh(al) 4)

Where R; is the soil resistance per length, R, is the coating resistance per length, a is the
attenuation coefficient, E 4 is the applied potential, and E,,, is the assumed minimum potential to
still provide protection. For both pipelines, the boundary condition at the at the drainage point (x
= 0) was assumed to be equal to E 4. Figure 4 compares of the model’s output with analytical
expression for potential distribution in pipelines, it was assumed that the coating and soil
properties were held constant for the entire length of the pipeline for both pipeline cases.

-0.5 T
=== [nfinite Pipeline - Analytical
Finite Pipeline - Analytical
#  TLM Ouput
0.6

s
b

Potential (V vs CSE)
S
fo2]

0.9
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Position (m)

Figure 4: Comparison of the TLM model output with analytical expression for potential
distribution in pipelines
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Figure 4 illustrates that the output of the model aligns completely with the potential decay
described by the two analytical solutions. This result demonstrates the model's capability to
accurately predict the potential distribution in the simplest scenarios, thereby validating its
effectiveness and reliability in handling fundamental cases.

Validation with Field CIPS

To validate the proposed TLM, the model’s output was compared with the on-potentials
measured using CIPS. The measured soil resistivity along the length of the pipeline and applied
potential values at rectifier sites were taken from the field data, and the coating resistivity values
along the pipeline were assumed to provide the best fit between the model and field data.
Comparable to the numerical analysis performed it was assumed that the coating properties were
distributed along the length of the pipeline. The RSD value was varied to find the best fit
between the model output and field CIPS data to incorporate any possible heterogeneities that
could occur in the system. The model’s output was only used to follow the general trend of the
field CIPS measurements since the model does not incorporate any possible measurement or
instrument error. Figure 5 and 6 show the measured soil resistivity, assumed interface coating
impedance magnitude, and the comparison between the model output and field data for two
different pipelines.

The first pipeline (Figure 5) used was 56 km section of pipeline with two potential
application sites at 431.76 km and 471.61 km with values of -1.76 V vs CSE and -2.24 V vs
CSE. The soil resistivity for the pipeline could be split into two regions, with the first region
from 426 km to around 452 km and the second region from around 452 km to 483 km. The first
region had a large variation from point to point in the measured resistivity ranging from 103 —
10° Q-cm while in the second region the resistivity was much more stable with values around
103 — 10* Q-cm. For the second pipeline (Figure 6) a 112 km section with multiple potential
application sites was used for validation. The location and potential values were included in
Table 3. The soil resistivity for the pipeline was relatively constant over the length of the
pipeline most values were around 103 — 10 Q.cm but past 60km the overall soil resistivity
values steadily increased.

12
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Figure 5: a) Measured soil resistivity versus location, b) assumed interface impedance magnitude versus
location, and ¢) comparison between the model’s output with the measured on-potentials. The Blue
dashed line is the minimum assumed protection potential (-0.850 V vs CSE)

Table 3: Pipeline 2’s rectifier location and applied potential

R er Lo 0 d 0 A d Pote
1.632 -1.4841
4.74 -1.5527
24.25 -1.842
26.92 -2.1001
42.11 -2.0105
47.57 -1.6497
52.39 -1.5683
68.97 -1.7491
90.18 -2.0524
100.41 -2.4861
111.58 -3.6703
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Figure 6: a) Measured soil resistivity versus location, b) assumed interface impedance magnitude versus
location, and ¢) comparison between the model’s output and the measured on-potentials. Blue dashed line
is the minimum assumed protection potential (-0.850 V vs CSE)

Figure 5b and Figure 6b display the impedance distribution along the length of the pipelines.
From the plots, it can be seen that in the area surrounding rectifiers, there seemed to be a
consistently lower overall impedance in these regions compared to the impedance of the rest of
the pipeline. A plausible reason for the impedance decrease is likely due to the accelerated aging
that can occur in coatings under higher levels of cathodic protection?!3, Since the applied
potential at the rectifier is known along with the resistivity values in the area, the only way to
account for the sharp rise in the measured potentials to more positive values would be from a
decreased impedance in the local area. To account for the lower impedance in regions relatively
farther away from the rectifiers, multiple factors can cause a decrease in interfacial impedance,
including a decrease in coating resistivity due to water uptake, chemical degradation of the
coating, and the presence of defects in the coating. Water uptake and chemical degradation of the
coating are slow processes that affect the coating impedance over time. This form of degradation
would typically only cause a relatively small but measurable change in the overall impedance of
the system. In the most extreme cases, where there is bare metal exposed, the overall impedance
changes would be very large over multiple orders of magnitude difference between locations due
to the exposure of the bare substrate. The ability of the model to pick and differentiate between
the possible accelerated degradation by the rectifiers and the damage that can occur naturally
along the pipe depends on the CIPS measurement resolution. With increasing distance between
measurement points, the total surface area that is being surveyed drastically increases.

14



Simulation of Electrical Bonding in Parallel Pipelines

Figure 7 shows a simplified example of electrical bonding between parallel pipelines that was
used to develop the true geometries used in the simulation. However, these drawings do not reflect
the actual spatial dimensions used in the model.

b Electrical Connection
Rectifier

Anodic Bed
0000

Pipeline A

Pipeline B

Figure 7: Simple example displaying the electrical bonding in parallel pipelines exposed to
the same CP system

For both simulation cases, it was assumed that the pipeline had a diameter of 0.5m (~20") and was
coated with a fusion-bonded epoxy (FBE). To simulate electrical bonding, it was assumed that the
electrical connection was made with a #4 AWG wire (@, = 0.005 m) and that the bonding wire
was coated with a perfectly insulating coating. For the parallel pipeline condition, it was assumed
that the drainage point (rectifier location) was positioned at the left boundary of pipeline 1. It was
assumed that the modeled domain was a small portion of two infinitely long pipelines.
Accordingly, with this assumption, the boundary conditions for the right boundary of pipeline 1
and both boundaries of pipeline 2 were defined such that the current approaches zero at infinity in
each direction. The modeled domain was adjusted for multiple simulations by altering the assumed
pipeline length and the configuration of bonding sites.

Figures 8 and 9 present two case studies used to simulate the multi-scale challenge of electrical
bonding of pipelines under the shared CP system. Figure 8 clearly illustrates that the placement
of the initial bonding site is important in the level of cathodic protection applied to the second
pipeline (without a CP system) as well as the deviation of the system from the isolated pipeline
case. As the number of bonding sites increases, the calculated potential difference between the two
pipelines consistently decreases, indicating enhanced electrical continuity and reduced CP
disparity. However, the observed maximum differential, ranging between 1 to 2 mV, is minimal
and likely indistinguishable in practical field measurements, where such subtle variations could be
obscured by system noise and measurement error. Despite this, the trend remains significant in
modeling contexts, as it underscores the sensitivity of pipeline interaction to bonding configuration
and density. To further tests the model’s ability to include bonding effects the length of the
pipelines was increased to more realistic distances on the order of km.

15
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Figure 8: Comparison of the number and location of bonding sites on the potential
distribution for cathodically protected pipelines, a) single bonding site (100m), b) two
bonding sites (40m and 160m), and c) three bonding sites (40m, 80m, and 160 m)

Figure 9 shows the simulation of longer pipeline segments to allow for a better understanding of
how these bonds can affect potential distributions on a real-world scale. For this simulation, the
soil resistivity was assumed to be homogenous across the domain and set to a value of 1e4 Qcm.
There were two model configurations consisting of two 10 km and 100 km pipelines separated
by 4 meters, with two different bonding locations. For the 10 km pipelines, an initial connection
was located at 1km, and for the 100 km pipelines, the location was set to 50 km.

Figure 9 further reinforces that the bonding site functions as an equipotential node between the
two pipelines, effectively equalizing the electrical potential at this connection point. In the second
pipeline, these bonding sites act analogously to drainage points in a CP system, like those observed
in pipeline 1 (x = 0). The potential distribution along the second pipeline exhibits the expected
exponential decay, characteristic of CP-influenced systems. Notably, downstream of the bonding
site, pipeline 1 mirrors this same decay profile, indicating a shared electrical behavior post-
connection. However, upstream of the bonding location, pipeline 1 displays a steeper potential
gradient than anticipated. Providing another way of showing the need for proper electrical
continuity when applying CP for more complex systems. Overall, the model successfully captures
the nuanced potential distribution across electrically bonded pipeline systems, validating its
applicability for simulating real-world CP interactions.
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Figure 9: Expansion of the model to include larger lengths of pipelines a) 10km pipeline
with single bonding location at 1km, and b) 100km pipeline with single bonding location at
50 km.

Spatial and Time Variation of Soil Resistivity

Soil is an inherently heterogeneous electrical medium that consists of three distinct phases, and
the resistivity is primarily dependent on the liquid phase present, since the resistivity is based on
the ion-ion interactions and electrolytic theory'*!>, Common soil resistivity values typically fall
into the range of 102 - 107 Q-cm depending on various factors (location, time of year, and
composition)*®. It is common for there to be some seasonal fluctuation in the soil resistivity due to
the changes in moisture content and temperature of the soil, depending on the time of the year.
Relationships can be made to understand the changes in the apparent soil resistivity depending on
the moisture content, temperature, and composition'’-°, The spatial variation of soil resistivity was
modeled using a lognormal distribution, reflecting the fact that resistivity values are strictly
positive and typically exhibit asymmetry around the mean. To simulate different levels of
variability within the system, the relative standard deviation (RSD) was used in the description of
the distribution parameters. Equation 5 represents the soil resistivity model used in this model
that considers the spatial and temporal variations. The spatial variation in Equation 6 — 10 is a
lognormal distribution with the individual terms, and Equation 6 presents a simplified empirical
model for simulating annual fluctuations in the soil resistivity driven by cyclical environmental
changes.

Psoir = Spatial Variation + Temporal Variation ()
Spatial Variation ~ lognormal(u, 5?) (6)
©= ln< 2psoil 2 ) (7)
vV Psoil + Osoil

Jo
o?=1In (1 + == ) ®)

Osoil
Tsoit = Psoit * RSDsoir C))
Temporal Variation = A cos(w(t — t,)) (10)
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Where Py,;; is the total combination of the soil resistivity in Q-cm. For the spatial variation u
and o are the lognormal distribution parameters, pg,;; is the mean values of the soil
resistivity for the region, a,;; is the standard deviation of the resistivity and is assumed to be
related to pg,;; by RSDq,;; Which is the assumed relative standard deviation of the soil. For the
cyclical variation A is the magnitude of the cyclical variation, w is the angular frequency, t is the
time in months, and t,, is the phase shift value.

For understanding how the spatial and time variation of soil resistivity plays a role in the overall
potential distribution for CP systems. It was assumed that the pipeline modeled was a 125 km
pipeline with a FBE coating with a mean coating resistivity of 1e15 cm and a 1% RSD of coating
resistivity, relative permittivity of 3, and thickness of 400 um. The average interfacial impedance
of this coating was calculated to be 4e13 Qcm?. These assumed pipelines were used in both
potential distribution profiles shown in Figure 10c and Figure 11.

Figure 10a and 10b illustrate the spatial and time variation of the soil resistivity, respectively. For
the spatial profile, a mean resistivity value of 5e3 Qcm was assumed, with an RSD of 20% to
account of natural heterogeneities that occur in the soil phase. Temporal variation was modeled
using the empirical relationship shown in Equation 6, incorporating a sinusoidal fluctuation
amplitude of the variation of 1e3 Q.cm. The phase shift was such that the resistivity peaked in the
middle of the year, corresponding to drier and warmer months. Although the empirical model is
simplistic, it captures the dominant seasonal trend and is sufficient for this analysis. It was assumed
that the and that Since temporal variation was cyclical, it was chosen only to simulate two
conditions. The boundary cases were selected to capture the extremes of soil behavior and assess
their impact on the CP performance under varying environmental conditions.
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Figure 10: a) Spatial and b) Temporal distribution of the soil resistivity, and c) Calculated
potential distribution at different assumed seasons.

Figure 10c provides a visualization of the role of cyclical soil effects on the potential distribution

in cathodically protected pipelines. The shift in the potential profile based on the season can have
an impact on the effectiveness of the CP system. If sacrificial anodes are used, then large seasonal
shifts in the soil resistivity can drastically reduce the anodes’ ability to protect the substrate in
times of higher soil resistivity. The use of impressed current systems can overcome this shift, but
care must be taken to ensure not to over-polarize the system and increase the risk of cathodic
disbondment and hydrogen embrittlement of the pipeline. The variation observed in the potential
profiles from Figure 10c prompted further investigation into the sensitivity of the potential
distributions with different mean resistivity values and cyclical amplitudes. Figure 11 presents the
resulting potential profiles for two systems, each characterized by distinct mean resistivity levels
and swing amplitudes.
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Figure 11: Comparison of the potential distribution under the high and low resistivity
season for a) mean soil resistivity 5e3 with 1e3 cyclical amplitude and b) mean soil
resistivity 1e3 and 5e2 cyclical swing

As shown in Figure 11, the impact of seasonal fluctuations is highly sensitive to the underlying
mean soil resistivity of the system. It is clear that the higher resistivity region is less sensitive to
the assumed seasonal fluctuations as compared to the lower resistivity region. This can also be
seen in the calculated residuals between the high and low resistivity seasons for the two regions
shown in Table 4.

Table 4: Quantitative Comparison of Potential Residuals Between the Season

Region Max (V vs CSE) Min (V vs CSE) Average (V vs CSE)
High Resistivity Region 0.106 1.8e-6 0.058
Low Resistivity Region 0.292 2.3e-6 0.150
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For the high resistivity region, the maximum difference in the potential profiles was around 100
mV vs CSE, while for the lower resistivity region, the maximum difference nearly tripled to around
290 mV vs CSE. This increased sensitivity to seasonal fluctuations in low-resistivity regions must
be carefully considered when designing and installing a CP system. Larger seasonal swings in the
potential profile can result in misestimating the required level of protection, potentially leading to
under-protection, and allowing corrosion to propagate unchecked.

Effect of Holiday Activity and Feature Size on Defect Detection

Detecting defects in pipeline coatings requires either a measurable change in pipe-to-soil potential
(as in CIPS), a detectable gradient in the system’s potential distribution (DCVG/ACVG), current
attenuation analysis, or in-line inspection techniques. All of these methods depend on high-
resolution surveys capable of identifying small-scale anomalies. When modeling relatively long
pipeline segments (>50 km), mesh validity becomes a challenge. Simulating localized defects,
often on the order of centimeters, within a coarse mesh can lead to numerical instability and
incoherent results. To address this, a two-tiered modeling approach is employed: a coarse global
model is first used to compute the general potential distribution across the pipeline. Then, targeted
high-resolution sub-models (~100 m in length) are applied to specific regions to resolve local
potential, transverse current, and interfacial impedance distributions. The averaged interfacial
impedance values from these refined sub-models are then reintegrated into the coarse model,
enabling a simplified yet representative simulation of regions with possible defects.

The system used for the high-resolution sub-model was a 100m length of pipeline with defects of
various sizes and activities located in the center of the simulated region. To assign the boundary
conditions of the model, the potential at the edges of the sub-model was set to the same values
obtained in the initial macro-scale simulation. The soil resistivity was the same over the sub-model
domain as in the coarse model. A summary of the holiday activity and sizes is shown in Table 5.

Table 5: Over view of sub-model parameters

Model Parameter Values ‘
Holiday Radius 1,10, 50 cm
Holiday R, 1e8, 1e5, 1e2 Qcm?

Three holiday sizes were selected to span a range from small to large with areas varying from
10° cm? to 103 cm?. Correspondingly, three activity levels were defined to represent different
surface conditions that may occur at the pipeline surface. If we assume that the anodic and cathodic
reactions occurring at the interface were shown by Equations 11 and 12 respectively?:

Fe — Fe?t + 2e~ (11)
2H* +2¢~ > H, (12)

Focusing on the anodic dissolution of iron (Equation 11), a high charge transfer resistance (R;)

indicates a high level of cathodic protection, effectively suppressing the reaction. As R;
decreased, the anodic reaction accelerated, reflecting reduced protection and increased surface
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activity.

The two-tiered modeling testing was performed on the same assumed pipeline system from the
previous section, assuming the soil resistivity distribution under the low resistivity season. Figure
12 shows the baseline potential distribution of the assumed system, with a marking at 50km
showing where the assumed defect in the pipelines coating will be present.
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Figure 12: Baseline potential distribution curve used for two-tiered simulation with a defect
located at 50km (boxed area)

To investigate the influence of defect size and activity, the local potential profiles are presented in
Figure 13. Figure 14 includes the maximum, minimum, and average values of |Z;| and i,
providing a quantitative summary of the systems interfacial impedance and transversal current
response. The calculated local potential distribution reveals that the detectability of coating
holidays depends on both their size and activity level (R.;). For the 1 cm radius holiday shown in
Figure 13a, there was minimal difference in the potential profile between the intact coating and
cases where R, was assumed to be 1e5 or 1e8 Qcm. A significant deviation in the potential
distribution only emerged when the holiday exhibited the highest level of activity. This trend
became more pronounced with increasing holiday size, where even moderate activity levels were
more likely to influence the system’s potential distribution. Suggesting that larger defects would
become detectable at lower activity levels, while smaller holidays require higher activity to have
the same impact.
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Figure 13: Comparison of the potential distributions for a) defect with 1 cm radius, b)
defect with 10 cm radius and b) defect with 50 cm radius at various activity levels
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A comparison of the average |Z;| values in Figure 14, and with the corresponding potential
distributions shows that significant changes to the potential profiles occur when the average |Z|
dropped 10° Qcm. Below this threshold, the model predicts a potential distribution that is
measurably different from the intact coating scenario. The maximum |Z;| and minimum i, are
governed by the coating properties. Both parameters exhibit consistent trends: as defect activity
increases, the average and minimum |Z;| decrease proportionally. The i, displayed an inversely
proportional relationship to that of the |Z;| where the current density would increase in the
defective area with increasing activity.

Using the calculated average |Z;| values for the 100 m region, the potential and interfacial
impedance profiles of the system modeled in Figure 15 were updated accordingly. Figure 15a
represents the potential profiles incorporating the updated |Z| values for the defective region,
while Figure 15b shows the corresponding interfacial impedance distribution for the system. For
the defective region centered around 50 Kk, the interfacial impedance was assumed to be constant
through the region. Four |Z;| values were chosen two at or above 10° Qcm and two values below.
This was chosen to see if the trend of the coarser global region had similar behavior to the local
simulations.
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Figure 15: Comparison of the potential distribution for a) various regions with different
levels of assumed interfacial impedance distributions using the calculated average |Z7|
values, and b) |Z| distribution over the region

Figure 15b reveals a deviation from the trend observed in the local simulations. When |Z;| was
set to 4.1e9 Qcm, there was a pronounced change in the overall potential profile in the global
simulation when contrary to expectations from the local simulations. This discrepancy most likely
stems from the assumption that the interfacial impedance region is a single and uniform value over
the entire region. By assigning a single |Z;|, the model assumed that each point in that region had
an imposed uniform and higher of i throughout the region, resulting in an exaggerated shift in the
potential profile.

Task 2. Integrating field inspection, theoretical, and experimental data by applying pattern
recognition techniques relating the pipeline-coating-soil system with CP

Effective pipeline integrity management requires a holistic understanding of the coupled pipeline
coating soil system and its interaction with cathodic protection (CP). Each component contributes
unique uncertainties: field inspections (e.g., close interval potential survey, inline inspection)
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provide point-wise or distributed evidence of anomalies, whereas theoretical models (e.g.,
transmission line model) offer mechanistic predictions and experimental data (e.g., soil resistivity
tests, coating disbondment) characterize localized behaviors under controlled conditions.
Integrating these heterogeneous data sources demands a common framework that can extract
patterns across scales and modalities.

As an initial step in this integration, we focused on soil heterogeneity. In earlier work, we
conducted a detailed feature analysis to identify independent and informative variables influencing
pipeline external corrosion. Building on this foundation, our recent efforts centered on determining
the number of underlying soil groups along the pipeline right-of-way (ROW). This was achieved
using an in-house developed Bayesian clustering algorithm that accounts for both spatial and
statistical behavior of the soil properties. The clustering process begins with identifying the
optimal number of clusters for a given soil dataset. Because clustering techniques rely on different
data properties, several evaluation measures are used to determine the best fit. For model-based
clustering, the Approximate Weight of Evidence Criterion (AWE) is commonly applied. When the
Expectation—Maximization (EM) algorithm is employed to estimate the maximum likelihood of a
mixture model, an approximation to AWE known as the Bayesian Information Criterion (BIC)
becomes particularly useful. The BIC is expressed as

BIC = 2loglike(x,0) — Mlog(n) (13)

where, loglike(x, 8)is the maximized log-likelihood, M is the number of independent
parameters to be estimated, and n is the number of data points. A higher BIC value indicates a
better model. This is because a well-fitting model yields a higher log-likelihood, while
minimizing the number of parameters(M). Using the selected features, the number of clusters
was determined by assuming a k-component multivariate Gaussian mixture distribution. Figure
16 shows the application of this approach to one of the pipeline datasets. The number of clusters
(k) was varied from 2 to 20, and the process was iterated 10 times. The knee point of the BIC
curve, observed at k = 2, indicates the optimal number of clusters?®. This result suggests that the
soil environment along the studied pipeline segment can be effectively represented by two
statistically distinct groups. Such grouping provides a meaningful simplification of the
heterogeneous soil system while retaining the dominant features that influence external corrosion
risk.

The Bayesian clustering algorithm proceeds by applying the Expectation—Maximization (EM)
algorithm to extract statistical patterns, such as cluster centers and covariance matrices, from the
dataset. This probabilistic framework explicitly accounts for uncertainties in the data, ensuring
robust clustering outcomes. The results of the clustering analysis are shown in Figure 17.
Figure 18a displays a 2D scatter plot of the first two principal components, with markers
representing the cluster centers and contours outlining the Gaussian mixture distributions. The
contours visually demonstrate the probabilistic boundaries of each cluster. Figure 18b presents a
3D scatter plot of the first three principal components, providing a more comprehensive
visualization of the clusters. This plot highlights the separation between cluster groups more
distinctly, confirming the effectiveness of the clustering algorithm in capturing the underlying
structure of the data.
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Next, we examined the field inspection data. The CP potential measurements obtained from a
close interval survey (CIS) for the study region are visualized in Figure 19. Additionally, the
metal loss depth, as estimated from an inline inspection (ILI) survey, was spatially aligned with
the CIS data and overlaid for comparison. The analysis reveals a potential correlation between soil
heterogeneity and regions of significant metal loss, underscoring the importance of understanding
the coupled relationship between soil properties, CP response, and pipeline integrity.
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Figure 19: CP potential measured along the pipeline right of way aligned with ILI
measured metal loss depth.

Building upon the initial theoretical framework developed by the Texas A&M team based on
laboratory experiments, we began our analysis of the CIS data by addressing the global trend
induced by the influence of rectifiers and anodes. The CP potentials originating from rectifiers
typically exhibit an exponential decay with increasing distance from the source. Based on the
dataset, the locations of rectifiers were identified at 431.6467 km and 471.612 km, as highlighted
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in Figure 20a. To prepare the CIS data for detailed analysis anomalous CIS measurements
inconsistent with surrounding trends were identified and filtered. Then an exponential decay
function was fitted to the potential profiles around the rectifier locations, modeling the underlying
global trend attributable to current discharge from rectifiers and anodes. The fitted curve, shown
in Figure 20b, captures the baseline exponential attenuation of CP potentials with distance. This
initial verification represents the first explicit link between theoretical predictions and
observed field data, thereby bridging laboratory models with in-field measurements. Building on
this foundation, we developed a Bayesian framework to systematically connect theory and
observations, as described in Task 3.
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Figure 20 (a): CIS on potential with location of rectifiers influencing the data. (b) Fitted
global trend representing potential decay.

Field data validation

To demonstrate feasibility, we first applied our framework to a 56 km pipeline by coupling a
forward Transmission Line Model (TLM) with field-measured soil resistivity profiles and using
Close Interval Potential Survey (CIPS) voltages as the observed data. The pipeline was discretized
into ~28 segments (2 km each), with each segment’s coating resistance treated as an unknown
inference parameter. We performed Bayesian inversion using the No-U-Turn Sampler (NUTS) in
PyMC, yielding posterior distributions and 95 % credible intervals for each segment’s impedance
as shown in Figure 21. As seen in Figure 4(a), the posterior predictive mean potentials (solid line)
closely track the observed CIPS voltages, capturing both the overall trend and local fluctuations.
Figure 21b plots the segment-wise posterior mean coating impedance (solid curve) together with
95 % credible intervals (shaded). Variability in impedance is notably low at the anode locations
where concentrated CP current drives the posterior to tighten, while mid-span segments between
rectifiers exhibit both lower mean impedances and wider credible intervals, flagging these zones
as potential coating degradation hotspots.
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Figure 21: (a) Observed vs Predicted potential (b) Coating Impedance along pipeline right
of way

Further validation was done by applying the model to a 110km pipeline as shown in Figure 22.
The pipe was discretized into 2km segments again resulting in approximately double inference
parameters. A major challenge in the Bayesian TLM implementation is the computational time
required to sample from a high-dimensional posterior. With ~55 coating-resistance parameters,
each NUTS iteration requires solving the TLM forward model (a sparse linear system) 55 times
per leapfrog step to evaluate gradients, dramatically increasing per-sample cost. Achieving
adequate effective sample sizes typically demands tens of thousands of iterations, further

compounding runtime.
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Figure 22: (a) Observed vs Predicted potential, (b) Coating Impedance along pipeline right
of way

Future work will focus on replacing the current fixed 2 km segmentation with an adaptive
discretization scheme that dynamically refines the mesh where it matters most. In practice, this
means allowing users or an uncertainty-driven algorithm to specify regions of interest (e.g., zones
with wide posterior credible intervals or suspected coating defects) and automatically subdivide
those areas into shorter segments (e.g., 500 m or finer). Coarser segmentation would be retained
in regions of low uncertainty to preserve computational efficiency. By coupling this adaptive mesh
refinement to the Bayesian updating loop, segment granularity evolves as new CIPS data arrive,
the digital twin will deliver higher-resolution impedance estimates exactly where they’re needed,
guide targeted inspections, and reduce unnecessary computation in benign sections of the pipeline.
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Task 3. Development and validation of the Bayesian machine learning framework with
experimental and field conditions

The goal of Task 3 is to establish a Bayesian machine learning framework that integrates
theoretical predictions, experimental findings, and field inspection data to quantify the interactions
within the pipeline—coating—soil-CP system. The framework was built on the foundation
established in earlier tasks:(i) the theoretical models developed by the Texas A&M team that
capture current and potential distributions along the pipeline. (ii) experimental datasets
characterizing coating degradation, soil resistivity, and electrochemical impedance, and (iii) field
inspection data from CIS and ILI surveys.

The proposed framework has three main components 1) the prior distributions 2) the physics
engine and 3) the evidence which together yield the posterior distributions of the parameters as
shown in Figure 23. Our aim is to infer the spatially varying coating impedance from CIPS within
a Bayesian framework. Hence the primary latent variable is the per unit coating impedance. To
encode the spatial heterogeneity of soil we incorporate the measured soil resistivity as the
informative prior, i.e., using it as a mean function for the soil resistivity field.

Priors distributions Physics Engine
/\ . Evidence
\ O—+=C
/ Field measurements
Coating impedance ) -
Soil resistivity — —

Bayesian inference

}

Posterior distribution

Figure 23: Bayesian Transmission Line Model framework

The TLM forward model produces potential profiles given priors on interface and soil properties,
but these are only predictions under assumptions. Incorporating evidence, the measured CIPS
potentials, via a realistic likelithood is what turns the model into an inference engine by Bayes’
rule,

p(V|6)p(6)

p(0|V)= o)

(14)
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where 8 is the set of all parameters that includes the interface impedance Zr and soil resistance Rs,
and V is the measured CIPS potentials (evidence). Hence the data reweight the prior to yield a
posterior over spatial interface impedance and associated predictive intervals. In short, aligning
TLM outputs with evidence from the field measurements via a probabilistic framework is the
mechanism that moves us from belief to actionable, uncertainty-quantified decisions.

Rather than producing a single deterministic profile of interface impedance, the posterior yields
probabilistic spatial maps that capture both the most likely values and the uncertainty associated
with them. This is critical in practice: a high posterior probability of low impedance at a given
station suggests a degraded interface, while wide credible intervals highlight areas where the
evidence is weak or ambiguous. From the posterior we can derive uncertainty bands on interface
impedance, compute the probability of degradation at each meter, and generate posterior predictive
traces of potential that can be directly compared to observed CIPS data. These outputs enable
engineers to move beyond threshold-based interpretations, providing a defensible basis for risk-
informed decisions such as excavation prioritization, scheduling follow-up surveys, and refining
integrity management strategies. In this way, the posterior is the core outcome of the Bayesian
TLM framework it turns physics-based modeling and noisy survey data into actionable,
uncertainty-aware guidance for pipeline integrity.

To demonstrate feasibility, we applied our framework to a 50 km pipeline by coupling a forward
TLM model with field-measured soil resistivity profiles and using CIPS voltages as the observed
data. The pipeline was discretized into segments of approximately 1 km each, with each segment’s
interface impedance treated as an unknown inference parameter. There are two CP anodes present
at locations of 5.76 km and 45.61 km along the right of way (ROW). The posterior distributions
and 95 % credible intervals for each segment’s impedance as shown in Figure 24. The Bayesian
TLM framework reveals spatial variability in coating condition. In several sections, the posterior
mean impedance drops by multiple orders of magnitude, indicating zones where the coating is
likely degraded. As expected, impedance is lowest at the anode locations, where current enters the
system and the credible interval the thinnest. Narrow credible intervals in some stretches suggest
high confidence in the inferred impedance, while wider intervals reflect areas where the evidence
is weaker, the data noisier, or soil resistivity less constrained. To validate these findings, we
overlaid the inline inspection data on metal loss along the ROW as seen in Figure 2 right y axis.
Importantly, the low-impedance regions of the lower-bound align with clusters of ILI metal loss
supporting the interpretation that where the coating is inferred to be weak, corrosion activity has
progressed to measurable wall loss. Conversely, regions of consistently high impedance with tight
uncertainty bounds show fewer ILI anomalies, consistent with effective cathodic protection and
intact coating.

Further, the posterior distribution of predicted potential with credible intervals (CI) gives a direct
check of how well the model captures the observed evidence, as shown in Figure 25. The predicted
potentials are generated by propagating posterior samples of coating impedance and soil resistivity
through the transmission-line model, yielding a full distribution of possible potential traces along
the right-of-way. The posterior mean closely follows the measured instant-OFF CIPS voltages,
while the shaded 95% credible intervals quantify the range of predictions consistent with both the
priors and the observed data. Together, Figure 24 and 25 confirm that the framework provides
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both cause (coating condition via impedance inference) and effect (voltage response via posterior
potentials), with uncertainty quantified at each step.
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Figure 24: Posterior distribution of interface impedance with 95% credible interval along
the 50km pipeline right of way (left-axis) overlaid with inline inspection metal loss (right
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Figure 25: Posterior distribution of predicted potential with 95 % credible interval along
the 50km pipeline ROW

Further testing was carried out on a second, longer pipeline of approximately 110 km. This asset
was again discretized into ~1 km segments, with each segment’s interface impedance treated as an
unknown parameter within the Bayesian TLM framework. This system has a greater number of
anodes present at locations [1.63, 4.74, 24.25, 26.92, 42.11, 47.57, 52.39, 68.97, 90.19, 100.40,
111.58]. The posterior impedance distributions (Figure 26) reveal clear spatial variability. As
expected, interface impedance values are lowest near the anode locations, reflecting the strong
current injection points and higher protective current density. Between anodes, impedance
increases gradually, with localized drops where the framework infers degraded coating. The
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posterior predictive distribution of CP potentials (Figure 27) also demonstrates strong agreement
with measured CIPS voltages. The predictive mean closely follows the observed OFF potentials
across the full 110 km, while the 95% predictive bands expand in sections with higher noise or
soil variability.
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Figure 26: Posterior distribution of interface impedance with 95% credible interval along
the 110km pipeline right of way (left-axis) overlaid with inline inspection metal loss (right
axis)

While the Bayesian TLM framework provides a rigorous and uncertainty-aware approach for
interpreting CIPS data, there are certain limitations. First, the framework is highly dependent on
the quality and density of input data. Noisy or poorly synchronized CIPS records can widen
posterior uncertainty and reduce effective resolution. Here, resolution refers to the smallest
segment length over which the interfacial impedance can be meaningfully inferred; in the present
study this was 1 km. The minimum achievable resolution is ultimately constrained by the density
of CIPS measurements, since the evidence defines the likelihood. Where data are sparse, the
posterior is driven primarily by the prior, and results may simply reflect smoothness assumptions
rather than true field variability.

Second, posterior sampling for long pipelines is computationally intensive. With hundreds of
inference parameters, Hamiltonian Monte Carlo (HMC) or related sampling methods can become
slow, making real-time or near-real-time deployment impractical without algorithmic
improvements, surrogate models, or dimensionality reduction strategies. In practice, it is often
more efficient to analyze pipelines in smaller sections, where computational demands remain
tractable and uncertainty estimates are better constrained.
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Figure 27: Posterior distribution of predicted potential with 95 % credible interval along
the 110km pipeline ROW

Application to two case studies demonstrated the feasibility, scalability, and robustness of the
approach. In both cases, the framework captured spatial variability in coating condition, correctly
reflecting low impedance at CP anode locations and highlighting degraded segments through
impedance drops spanning multiple orders of magnitude.

Further validation was conducted using field datasets collected from the same pipeline in 2018
and 2024. Figure 28 shows the posterior distribution of predicted CP potential (¢) with 95%
credible intervals along the pipeline ROW for both years. The black markers represent observed
CIS measurements, while the colored bands depict model predictions and associated uncertainties.

In 2018 (Figure 28, top), the framework reproduced the general CIS trends, but wider credible
intervals reflect greater uncertainty due to localized variability and limited prior calibration. By
2024 (Figure 28, bottom), the model showed significantly improved agreement with observations,
capturing sharper potential drops and localized under-protection zones with narrower credible
intervals.
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Figure 28: Posterior distribution of predicted CP potential (¢) with 95% credible intervals
along the same pipeline ROW for 2018 and 2024.
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Figure 29: Posterior distribution of interface impedance with 95% credible of the same
pipeline for years 2018 and 2024

The inferred pipeline coating soil interface impedance was compared across the two survey
years. Figure 29 presents the overlay of impedance distributions for 2018 and 2024 along the
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pipeline ROW. The results highlight distinct temporal changes in interface behavior. There will be
study done in future to better understand the data.

The present study demonstrates the feasibility of the Bayesian TLM framework, and a critical next
step is to validate the results through direct field verification of pipeline condition. A test-bed
pipeline has already been identified, and planned excavations and inspections are expected to
provide the ground-truth data necessary to further validate the methodology.

Task 4 — Development and validation of the methodology for ECDA based on CP levels
Proposal for Non-Destructive Monitoring of Buried Pipeline Health in RELLIS Campus

We will perform a 2 — 3-month monitoring program of non-destructive electrical and
electrochemical measurements to assess the integrity of buried pipelines on the RELLIS

Campus. We are planning on using established techniques such as: close interval potential survey
(CIPS), DC/AC voltage gradient (DCVG/ACVG), and pipeline current mapping (PCM). These
techniques will be used to validate a proposed cathodic protection (CP) model developed in the
National Corrosion and Materials Reliability Center (NCMRC). Importantly the proposed testing
will be concluded with zero disruption to pipeline services and minimal environmental
disturbance.

Objectives

Site Preparation and Electrical Connection Magnetic Clamps

1. Select target pipeline segments based on history

~
and accessibility. o

2. Determine if existing CP is present:

Magnetic Clamp
o If CP is absent, we will attach a Magnetic Clamps with On/Off Switch
temporary sacrificial anode to apply local
CP.

3. Excavate a relatively small area for access
(roughly 30 x 30 cm) to expose the pipeline for
electrical connection.

4. Secure all electrical connections using magnetic

Magnetic Clamp Multiple-Angle Magnetic

clamps (no welding required). with On/Off Clamp with On/Off Switch
Switch
5. Backfill the pits and mark locations with Figure 30: Example of

temporary flags for easy re-exposure and extraction ~Magnetic clamps to be used for
of electrical connections and anodes electrical connection
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Test Methods

Technique Purpose
CIPS Measure the pipe-to-soil potentials in short length intervals (~ Im)
DC/ACVG Detect voltage gradients in the soil due to coating defects
PCM Map current distributions in the pipeline from CP system

Test Protocol and Schedule

Activity Frequency Description
NDE Measurements Weekly Measurements will be performed weekly for 2 —
3 hours per pipeline segment
. . Small samples will be taken from the field and
Soil Sampling Monthly analysis will be performed in the corrosion lab
e The models output based on the some of the
ModeTle\S/tz}Edatlon Weekly field measurements will be compared with the
& CIPS data for model validation

Environmental and Safety Considerations

« Limit pit footprint to minimize surface disturbance.

o Refill and restore excavations immediately once connections have been made and after
connections are removed when testing has ended.

« Adbhere to all safety and excavation protocols
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Future work

e Continue to update the model with various impedance definitions based on mechanistic
analysis of processes occurring at the interface
e Adapt the model for comparison with field data
e Continue EIS testing and building a database of impedance responses of various systems.
o Instantaneous EIS vs time-based EIS at OCP.
o Effect of coating thickness with and without defects
o CP testing under all coating conditions and coating types
e Create an empirical relationship between the degradation of coating resistivity based on
the level of applied polarization for intact coatings exposed to simulated soil
environment.
e Continue to characterize the potential decay for the various systems.
e Create testing protocol and testing matrix for characterizing various defect geometries
and types with reflectometry
e Perform Field measurements to validate the methodology for assessing CP in buried
pipelines.
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