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Section A: Business and Activities  

(a) Contract Activities 

• Contract Modifications:  

No contract modifications have been considered or executed during the second year.  

• Educational Activities:  

o Student mentoring:  

We organize weekly meetings in the corrosion group for research updates and activities 

performed. Each student is assigned a PhD student or a Postdoctoral Fellow to follow up 

on the activities and discuss the results obtained. The students participate in the 

laboratory activities and conferences (such as AMPP and TAMU internal conferences).  

Personalized mentoring with a PhD student or Postdoctoral Fellow to follow up on the 

student's activities and discuss the results.  

o Student internship:  

Nothing to report 

o Educational activities:  

We organized an industrial course, Fundamentals, Experiments, and Applications in 

Corrosion, one of the chapters of which was related to corrosion in pipelines. The course 

has been offered since 2022.  

o Career employed: 

Nothing to report 

• Dissemination of Project Outcomes:  

We submitted two abstracts to the AMPP 2026 annual conference, and they were 

accepted. We have one Research in Progress and one poster for the same conference. 

We presented an oral work at Eurocorr 2026 in Norway. We have one PhD thesis that 

was defended in July 2025.   

• Citations of The Publications: 

Reece Goldsberry and Homero Castaneda, Characterization and Potential Distribution 

Mapping of Cathodically Protected Buried Pipelines based on Homogeneous and 

Heterogeneous Factors, Journal of Pipeline Science and Engineering, 

https://doi.org/10.1016/j.jpse.2025.100350,  

https://doi.org/10.1016/j.jpse.2025.100350
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• Patent Disclosure 

TI Ref. & Title: 6853TEES25- Multi-Scale FEM Electrochemical Model based on 

Transmission Line Theory 

Inventor(s): Reece Goldsberry, Homero Castaneda-Lopez 

 

(b) Financial Summary 

• Federal Cost Activities: 

Category Amount spent during Year 2 

2024-2025 

Personnel $16,404.02 

Faculty $33,364.07 

PosDoc NA 

Students (RA) $649.00 

Benefits $ 9,271.16 

Operating Expenses $518.00 

Travel $493.96 

Materials and Supplies $300.43 

Miscellaneous $14,001.53 

Subcontracts $38,857.60 

Indirect costs $32,025.33 

Total Costs $145,885.10 

• Cost Share Activities: 

o Cost share contribution: 

• Heuristech has contributed $28,200.00 in technology training and/or company personnel 

hours for physical laboratory testing and mathematical tools.  

• Integrity Solutions has contributed $86,000 in CP field data collection, technical staff 

resources to collect, collate, evaluate, screening, database development, attending 

workshops and training, analyzing Cathodic Protection (CP) data, contributing to 

computer algorithm development programming, and other program software/model 

components. 

• The University of Dayton has contributed $38,283.38 in cost share, $25,437.46 in faculty 

payroll and $12,845.92 in indirect costs.  

(c) Project Schedule Update 

• Project Schedule:  
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• Corrective Actions:  

We have been working on the field testing validation planning during the last quarter, 

and we will use some pipelines located in the RELLIS campus at Texas A&M. We have 

two PhD graduates involved in this task.  

Task Risk Priority Risk 

Description 

Impact Summary Response Strategy 

Select different 

pipelines for 

validation of 

the 

Methodology. 

Task 4 

Medium to 

High 

-Not finding and 

using the 

selected 

pipelines due to 

logistics 

Identification of pipelines 

that will allow us to validate 

the Methodology. 

Risk Avoidance 

RELLIS campus 

administration will allow the 

use of the facilities with a 

proposal.  

Table 1. Timeline and schedule for the project in Gantt chart.    

Task/Subtask 

                      Fiscal Year     

2023 2024 2025 2025 2026 2026 2026 

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 

Task 1: Designing and building the 

physical prototypes in laboratory 

conditions and deterministic modeling         

    

Task 2: Integrating field inspection, 

theoretical with experimental data by 

applying pattern recognition techniques 

relating the pipeline-coating-soil system 

with CP         

    

Task 3: Validation of the a priori 

framework with experimental and field 

conditions for characterization/modeling 

and Evaluate/Validate         

    

Task 4: Development and validation of 

the methodology for ECDA based on CP 

levels         

    

Deliverable Milestones are indicated in black* 
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Section B: Detailed Technical Results in the Report Period 

1. Background and Objectives in the 2nd Annual Report Period 

Background 

Over the past year, we refined the deterministic model based on TLM, which can characterize, 

quantify, and assess various components of the cathodic protection system. The development 

of the TLM has become the keystone of the theoretical/experimental/field platform. Different 

features were added to the TLM-based model to identify low-impedance sites. The TLM model 

was validated with different field data from different ROW; the validation included the 

recognition of low impedance sites (rectifiers, anodic bed, coatings holidays). This 

characterization serves as the baseline for the selected ROW. The TLM model was able to 

reconcile the laboratory results with the theoretical prediction. A multiscale approach was used 

in the lab to validate the TLM at the small or micron scale and the laboratory or cm scale. The 

integration of the laboratory results with the TLM leads the pathway to integration on a macro 

scale.  

A critical step in clustering analysis is determining the optimal number of clusters for a given 

dataset. Since clustering techniques rely on different data properties, various measures have 

been proposed to identify the best fit. During this period, we developed advanced methods for 

analyzing measured cathodic protection (CP) potentials. The CP potential data obtained from 

a close interval survey (CIS) for the specified region were visualized. Additionally, the metal 

loss depth, as estimated using an inline inspection (ILI) survey, is aligned with the CP potential 

data and overlaid for comparison. The analysis reveals a potential correlation between soil 

heterogeneity and regions of significant metal loss, highlighting the importance of 

understanding the relationship between soil properties and pipeline integrity. In the last quarter, 

we were able to integrate clustering and machine learning with the TLM. Finally, the validation 

of the developed methodology based on ECDA for assessing the cathodic protection will be 

performed in two ways: the current database for different ROW, and with an existing pipeline. 

The team found a steel pipeline located at the RELLIS campus of Texas A&M University.  

Objectives in the Annual Report Period 

OBJECTIVES 

The herein proposal includes the following objectives: 

• Develop a unique experimental-mathematical modeling platform with field data-driven 

that will serve as an external corrosion assessment tool for the identification and 

quantification of CP effectiveness.  

• Reduce the likelihood of incidents related to failures caused by corrosion, thus boosting 

the overall integrity of pipeline systems,  

• Enhance the identification, quantification, and assessment of anomalies, elements of the 

pipeline, and CP elements via deterministic, data-driven, and artificial intelligence. 

• Perform standard measurement pipeline monitoring techniques for validation of a 

developed CP model 
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2. Theoretical and Experimental Program in the Annual Report Period 

2.1 Theoretical Deterministic Model Based on Transmission Line Theory 

In continued efforts to create a deterministic model for modeling the potential distribution in 

cathodically protected pipelines, validation was performed both on the lab and field scale. 

Validation on the lab scale was continued by comparing the output of the 2D TLM using 

mechanistic definitions for the interface impedance with experimental data. To begin validating 

the model in the larger field scale, the initial model was extended to a quasi-1D case where the x-

direction of the model (length of the pipeline) is on the order of kilometers while the y-direction 

(circumference of the pipeline) is on the order of meters. After validation, the model was then 

extended to be able to accurately simulate the potential distribution under more complex and 

dynamic conditions. Key enhancements include the incorporation of temporal variations in soil 

regime based on seasonal shifts, the multi-scale modeling of electrical bonding between pipelines, 

and localized interfacial impedance adjustments based on defects present in the coating. These 

local simulations enable multiscale features to be integrated within a coarser global framework for 

enhanced physical accuracy and real-world applicability.  

Theoretical Deterministic Model coupled with the Machine Learning model Framework 

The transmission-line model (TLM) was developed by the Texas A&M team to numerically 

compute the potential distribution along the soil–pipeline interface, taking into account the spatial 

heterogeneity. However, variability in soil resistivity, coating impedance, and other environmental 

factors introduces uncertainty that purely physics-based models cannot fully capture. To address 

this, we developed and implemented a physics-informed and uncertainty-aware Bayesian digital 

twin for pipeline external corrosion assessment, which couples a physics-based transmission-line 

model (TLM) with a Bayesian probabilistic updating framework. By integrating high-fidelity 

numerical simulation of the pipeline-soil interface with probabilistic inference, the digital twin 

yields spatially resolved predictions of coating interfacial impedance and assesses cathodic 

protection (CP) effectiveness, along with quantified uncertainty. The proposed approach, as shown 

in Figure 1, enhances traditional external corrosion direct assessment (ECDA) by accounting for 

heterogeneous soil and coating properties, enabling more reliable severity estimates and informed 

maintenance planning. 
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Figure 1: Proposed framework for Bayesian Transmission Line Model 

2. 2 Experimental Plan 

Continued laboratory testing involves validating a deterministic model for cathodic 

protection (CP) systems through two distinct laboratory-scale experiments, aiming to extend the 

model's accuracy across multiple length scales and extend to two dimensions. The first validation 

case (Figure 2) focuses on measuring the two-dimensional potential distribution in a scaled-down 

system that incorporates real-world complexities like electrical bonding between pipelines, 

complex geometries, and external AC/DC interferences. This setup uses carbon steel pipes with 

Fusion-Bonded Epoxy (FBE) coating buried in soil. The second validation case (Figure 3) 

investigates the impact of CP polarization on the degradation of applied coatings. Coated panels 

will be exposed to environmental factors, either under CP or natural aging, and their resulting 

electrochemical properties will be measured using Electrochemical Impedance Spectroscopy 

(EIS). The data from both cases will be used to refine the model, especially by defining the 

interfacial impedance for aged coatings, ultimately building confidence in the model's ability to 

simulate real-world CP systems. 
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Figure 2: a) Numerical simulation of a two-dimensional potential distribution for an arbitrary 

pipeline network with singular anode placement, and b) Small-scale physical model of pipeline 

network 

 
Figure 3: Physical setup for testing the effectiveness of CP on aged coating panels  

Theoretical Deterministic Model 

2.3 Theoretical, experimental, and field implications of Interfacial Impedance  

Both mechanistic and traditional electrical equivalent circuit (EEC) definitions can be used when 

defining the interfacial impedance in the TLM Potential Distribution model. A summary of the 

EEC definitions and mechanistic definitions is shown in Tables 1 and 2, respectively.  

Table 1: Traditional EEC Definitions  

Electrical Element Impedance Form Use 

R 𝑍𝑅 = 𝑅 Charge Transfer Processes 

C 𝑍𝐶 =
1

𝑖𝜔𝐶
 

Capacitive Processes  
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CPE 𝑍𝐶𝑃𝐸 =
1

(𝑖𝜔)𝑛𝑄
 

Capacitive Processes with assumed 

heterogeneities at the interface  

Warburg 

Impedance1,2 
𝑍𝑊 = 𝜎𝑊(𝑖𝜔)

−1/2 
Diffusion Processes  

Table 2: Mechanistic Impedance Definitions  

Mechanism  Impedance Form 

Coating Capacitance: Ideal  𝐶𝐶 =
𝜖0𝜖𝑟𝐴

𝑡
 

Coating Capacitance: Double 

Layer3,4,5,6,7 

𝑍(𝜔) = 𝛿
𝜌𝑐

1 + 𝑖𝜔𝜏
−

𝜆

𝑖𝜔𝜖0𝜖𝑟
ln(

1 + 𝑖𝜔𝜏exp⁡(−
𝑡 − 𝛿
𝜆

)

1 + 𝑖𝜔𝜏
) 

𝜏 = 𝜖0𝜖𝑟𝜌𝑐 

Coating Resistance 𝑅𝐶 =
𝜌𝑐𝑡

𝐴
 

Double Layer Capacitance8  

𝐶𝑑𝑙 = (
1

𝐶𝐻
+

1

𝐶𝑑𝑖𝑓𝑓
)

−1

 

𝐶𝐻 =
𝜖

4𝜋𝑑
 

𝑄𝑑 = −[2𝜖𝑅𝑇∑𝑐𝑖
0 (exp (

𝑧𝑖𝐹𝜓0

𝑅𝑇
) − 1)]

1
2
 

𝐶𝑑𝑖𝑓𝑓 = −
𝑑𝑄𝑑

𝑑𝜓0
 

Charge Transfer Resistance    

𝑖 = ⁡𝑖0 exp(𝑏(𝐸 − 𝐸0)) 

𝑖̃ = 𝑖𝑏̅𝐸̃ 

𝑖̅ = 𝑖0 exp(𝑏(𝐸̅ − 𝐸0)) 

𝑅𝑐𝑡 = (
𝐸̃

𝑖̃
) =

1

𝑖 ∙ 𝑏
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3. Results and Discussions 

Task 1: Designing and building the physical prototypes in laboratory conditions and deterministic 

modeling 

Validation of TLM Potential Distribution Model  

 Verification with Analytical Solution 

  Firstly, the model’s output was compared with commonly used analytical solutions for 

describing the potential decay seen in cathodically protected pipelines. Equations 1 – 4 are used 

to calculate the potential decay for an infinite or finite pipeline with a length of 𝟐𝒍⁡respectively9-

11. The ending boundary condition infinite pipeline was such that as the pipeline went to infinity 

eventually the assumed potential would be equal to zero and for the finite pipeline at the end of 

the pipeline (x = l) the potential is equal to 𝑬𝒎 or more simply it could be assumed that the 

current will be zero (𝒅𝑬/𝒅𝒙⁡= 0). 

 𝐸𝑖𝑛𝑓 = 𝐸𝐴𝑒
−𝛼𝑥 (1) 

𝐸𝑓𝑖𝑛 = 𝐸𝑚cosh⁡(𝛼(𝑙 − 𝑥)) (2) 

𝛼 = √𝑅𝑠/𝑅𝑐⁡ (3) 

𝐸𝐴 = 𝐸𝑚cosh⁡(𝛼𝑙) (4) 

Where 𝑹𝒔 is the soil resistance per length, 𝑹𝒄 is the coating resistance per length, 𝜶 is the 

attenuation coefficient, 𝑬𝑨 is the applied potential, and 𝑬𝒎 is the assumed minimum potential to 

still provide protection. For both pipelines, the boundary condition at the at the drainage point (x 

= 0) was assumed to be equal to 𝑬𝑨. Figure 4 compares of the model’s output with analytical 

expression for potential distribution in pipelines, it was assumed that the coating and soil 

properties were held constant for the entire length of the pipeline for both pipeline cases.  

 

Figure 4: Comparison of the TLM model output with analytical expression for potential 

distribution in pipelines 
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Figure 4 illustrates that the output of the model aligns completely with the potential decay 

described by the two analytical solutions. This result demonstrates the model's capability to 

accurately predict the potential distribution in the simplest scenarios, thereby validating its 

effectiveness and reliability in handling fundamental cases.  

 Validation with Field CIPS 

To validate the proposed TLM, the model’s output was compared with the on-potentials 

measured using CIPS. The measured soil resistivity along the length of the pipeline and applied 

potential values at rectifier sites were taken from the field data, and the coating resistivity values 

along the pipeline were assumed to provide the best fit between the model and field data. 

Comparable to the numerical analysis performed it was assumed that the coating properties were 

distributed along the length of the pipeline. The RSD value was varied to find the best fit 

between the model output and field CIPS data to incorporate any possible heterogeneities that 

could occur in the system. The model’s output was only used to follow the general trend of the 

field CIPS measurements since the model does not incorporate any possible measurement or 

instrument error. Figure 5 and 6 show the measured soil resistivity, assumed interface coating 

impedance magnitude, and the comparison between the model output and field data for two 

different pipelines.  

The first pipeline (Figure 5) used was 56 km section of pipeline with two potential 

application sites at 431.76 km and 471.61 km with values of -1.76 V vs CSE and -2.24 V vs 

CSE. The soil resistivity for the pipeline could be split into two regions, with the first region 

from 426 km to around 452 km and the second region from around 452 km to 483 km. The first 

region had a large variation from point to point in the measured resistivity ranging from 103 −
105⁡Ω-cm while in the second region the resistivity was much more stable with values around 

103 − 104⁡Ω-cm. For the second pipeline (Figure 6) a 112 km section with multiple potential 

application sites was used for validation. The location and potential values were included in 

Table 3. The soil resistivity for the pipeline was relatively constant over the length of the 

pipeline most values were around 103 − 104⁡Ω𝑐𝑚 but past 60km the overall soil resistivity 

values steadily increased.   
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Figure 5: a) Measured soil resistivity versus location, b) assumed interface impedance magnitude versus 

location, and c) comparison between the model’s output with the measured on-potentials. The Blue 

dashed line is the minimum assumed protection potential (-0.850 V vs CSE) 

Table 3: Pipeline 2’s rectifier location and applied potential 

Rectifier Location current drainage 

(km) 

Applied Potential 

(V vs CSE) 

1.632 -1.4841 

4.74 -1.5527 

24.25 -1.842 

26.92 -2.1001 

42.11 -2.0105 

47.57 -1.6497 

52.39 -1.5683 

68.97 -1.7491 

90.18 -2.0524 

100.41 -2.4861 

111.58 -3.6703 



14 
 

 

Figure 6: a) Measured soil resistivity versus location, b) assumed interface impedance magnitude versus 

location, and c) comparison between the model’s output and the measured on-potentials. Blue dashed line 

is the minimum assumed protection potential (-0.850 V vs CSE) 

Figure 5b and Figure 6b display the impedance distribution along the length of the pipelines. 

From the plots, it can be seen that in the area surrounding rectifiers, there seemed to be a 

consistently lower overall impedance in these regions compared to the impedance of the rest of 

the pipeline. A plausible reason for the impedance decrease is likely due to the accelerated aging 

that can occur in coatings under higher levels of cathodic protection12,13. Since the applied 

potential at the rectifier is known along with the resistivity values in the area, the only way to 

account for the sharp rise in the measured potentials to more positive values would be from a 

decreased impedance in the local area. To account for the lower impedance in regions relatively 

farther away from the rectifiers, multiple factors can cause a decrease in interfacial impedance, 

including a decrease in coating resistivity due to water uptake, chemical degradation of the 

coating, and the presence of defects in the coating. Water uptake and chemical degradation of the 

coating are slow processes that affect the coating impedance over time. This form of degradation 

would typically only cause a relatively small but measurable change in the overall impedance of 

the system. In the most extreme cases, where there is bare metal exposed, the overall impedance 

changes would be very large over multiple orders of magnitude difference between locations due 

to the exposure of the bare substrate.  The ability of the model to pick and differentiate between 

the possible accelerated degradation by the rectifiers and the damage that can occur naturally 

along the pipe depends on the CIPS measurement resolution. With increasing distance between 

measurement points, the total surface area that is being surveyed drastically increases. 
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Simulation of Electrical Bonding in Parallel Pipelines  

Figure 7 shows a simplified example of electrical bonding between parallel pipelines that was 

used to develop the true geometries used in the simulation. However, these drawings do not reflect 

the actual spatial dimensions used in the model.   

 

 

Figure 7: Simple example displaying the electrical bonding in parallel pipelines exposed to 

the same CP system  

For both simulation cases, it was assumed that the pipeline had a diameter of 0.5m (~20”) and was 

coated with a fusion-bonded epoxy (FBE). To simulate electrical bonding, it was assumed that the 

electrical connection was made with a #4 AWG wire (∅𝑤𝑖𝑟𝑒 =⁡0.005 m) and that the bonding wire 

was coated with a perfectly insulating coating. For the parallel pipeline condition, it was assumed 

that the drainage point (rectifier location) was positioned at the left boundary of pipeline 1. It was 

assumed that the modeled domain was a small portion of two infinitely long pipelines. 

Accordingly, with this assumption, the boundary conditions for the right boundary of pipeline 1 

and both boundaries of pipeline 2 were defined such that the current approaches zero at infinity in 

each direction. The modeled domain was adjusted for multiple simulations by altering the assumed 

pipeline length and the configuration of bonding sites. 

Figures 8 and 9 present two case studies used to simulate the multi-scale challenge of electrical 

bonding of pipelines under the shared CP system. Figure 8 clearly illustrates that the placement 

of the initial bonding site is important in the level of cathodic protection applied to the second 

pipeline (without a CP system) as well as the deviation of the system from the isolated pipeline 

case. As the number of bonding sites increases, the calculated potential difference between the two 

pipelines consistently decreases, indicating enhanced electrical continuity and reduced CP 

disparity. However, the observed maximum differential, ranging between 1 to 2 mV, is minimal 

and likely indistinguishable in practical field measurements, where such subtle variations could be 

obscured by system noise and measurement error. Despite this, the trend remains significant in 

modeling contexts, as it underscores the sensitivity of pipeline interaction to bonding configuration 

and density. To further tests the model’s ability to include bonding effects the length of the 

pipelines was increased to more realistic distances on the order of km. 
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Figure 8: Comparison of the number and location of bonding sites on the potential 

distribution for cathodically protected pipelines, a) single bonding site (100m), b) two 

bonding sites (40m and 160m), and c) three bonding sites (40m, 80m, and 160 m) 

Figure 9 shows the simulation of longer pipeline segments to allow for a better understanding of 

how these bonds can affect potential distributions on a real-world scale. For this simulation, the 

soil resistivity was assumed to be homogenous across the domain and set to a value of 1e4 Ωcm. 

There were two model configurations consisting of two 10 km and 100 km pipelines separated 

by 4 meters, with two different bonding locations. For the 10 km pipelines, an initial connection 

was located at 1km, and for the 100 km pipelines, the location was set to 50 km.  

Figure 9 further reinforces that the bonding site functions as an equipotential node between the 

two pipelines, effectively equalizing the electrical potential at this connection point. In the second 

pipeline, these bonding sites act analogously to drainage points in a CP system, like those observed 

in pipeline 1 (𝑥 = 0). The potential distribution along the second pipeline exhibits the expected 

exponential decay, characteristic of CP-influenced systems. Notably, downstream of the bonding 

site, pipeline 1 mirrors this same decay profile, indicating a shared electrical behavior post-

connection. However, upstream of the bonding location, pipeline 1 displays a steeper potential 

gradient than anticipated. Providing another way of showing the need for proper electrical 

continuity when applying CP for more complex systems. Overall, the model successfully captures 

the nuanced potential distribution across electrically bonded pipeline systems, validating its 

applicability for simulating real-world CP interactions. 
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Figure 9: Expansion of the model to include larger lengths of pipelines a) 10km pipeline 

with single bonding location at 1km, and b) 100km pipeline with single bonding location at 

50 km.  

Spatial and Time Variation of Soil Resistivity  

Soil is an inherently heterogeneous electrical medium that consists of three distinct phases, and 

the resistivity is primarily dependent on the liquid phase present, since the resistivity is based on 

the ion-ion interactions and electrolytic theory14,15. Common soil resistivity values typically fall 

into the range of 102 - 107 Ω-cm depending on various factors (location, time of year, and 

composition)16. It is common for there to be some seasonal fluctuation in the soil resistivity due to 

the changes in moisture content and temperature of the soil, depending on the time of the year. 

Relationships can be made to understand the changes in the apparent soil resistivity depending on 

the moisture content, temperature, and composition17-19. The spatial variation of soil resistivity was 

modeled using a lognormal distribution, reflecting the fact that resistivity values are strictly 

positive and typically exhibit asymmetry around the mean. To simulate different levels of 

variability within the system, the relative standard deviation (RSD) was used in the description of 

the distribution parameters. Equation 5 represents the soil resistivity model used in this model 

that considers the spatial and temporal variations. The spatial variation in Equation 6 – 10 is a 

lognormal distribution with the individual terms, and Equation 6 presents a simplified empirical 

model for simulating annual fluctuations in the soil resistivity driven by cyclical environmental 

changes.  

Ρ𝑠𝑜𝑖𝑙 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙⁡𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (5) 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙⁡𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛⁡~⁡𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) (6) 

𝜇 = ln (
𝜌𝑠𝑜𝑖𝑙

√𝜌𝑠𝑜𝑖𝑙
2 + 𝜎𝑠𝑜𝑖𝑙

2
) (7) 

𝜎2 = ln(1 +
𝜌𝑠𝑜𝑖𝑙
2

𝜎𝑠𝑜𝑖𝑙
2 ) (8) 

𝜎𝑠𝑜𝑖𝑙 = 𝜌𝑠𝑜𝑖𝑙 ∗ 𝑅𝑆𝐷𝑠𝑜𝑖𝑙  (9) 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙⁡𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐴 cos(𝜔(𝑡 − 𝑡0)) (10) 
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Where Ρ𝑠𝑜𝑖𝑙 is the total combination of the soil resistivity in Ω-cm. For the spatial variation 𝜇 
and 𝜎 are the lognormal distribution parameters,  𝜌𝑠𝑜𝑖𝑙  is the mean values of the soil 

resistivity for the region, 𝜎𝑠𝑜𝑖𝑙 is the standard deviation of the resistivity and is assumed to be 

related to 𝜌𝑠𝑜𝑖𝑙 by 𝑅𝑆𝐷𝑠𝑜𝑖𝑙 which is the assumed relative standard deviation of the soil. For the 

cyclical variation 𝐴 is the magnitude of the cyclical variation, 𝜔 is the angular frequency, 𝑡 is the 

time in months, and 𝑡0 is the phase shift value.  

For understanding how the spatial and time variation of soil resistivity plays a role in the overall 

potential distribution for CP systems. It was assumed that the pipeline modeled was a 125 km 

pipeline with a FBE coating with a mean coating resistivity of 1e15 Ωcm and a 1% RSD of coating 

resistivity, relative permittivity of 3, and thickness of 400 μm. The average interfacial impedance 

of this coating was calculated to be 4e13 Ωcm2. These assumed pipelines were used in both 

potential distribution profiles shown in Figure 10c and Figure 11.  

Figure 10a and 10b illustrate the spatial and time variation of the soil resistivity, respectively. For 

the spatial profile, a mean resistivity value of 5e3 Ωcm was assumed, with an RSD of 20% to 

account of natural heterogeneities that occur in the soil phase. Temporal variation was modeled 

using the empirical relationship shown in Equation 6, incorporating a sinusoidal fluctuation 

amplitude of the variation of 1e3 Ωcm. The phase shift was such that the resistivity peaked in the 

middle of the year, corresponding to drier and warmer months. Although the empirical model is 

simplistic, it captures the dominant seasonal trend and is sufficient for this analysis. It was assumed 

that the and that Since temporal variation was cyclical, it was chosen only to simulate two 

conditions. The boundary cases were selected to capture the extremes of soil behavior and assess 

their impact on the CP performance under varying environmental conditions. 
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Figure 10: a) Spatial and b) Temporal distribution of the soil resistivity, and c) Calculated 

potential distribution at different assumed seasons.  

 Figure 10c provides a visualization of the role of cyclical soil effects on the potential distribution 

in cathodically protected pipelines. The shift in the potential profile based on the season can have 

an impact on the effectiveness of the CP system. If sacrificial anodes are used, then large seasonal 

shifts in the soil resistivity can drastically reduce the anodes’ ability to protect the substrate in 

times of higher soil resistivity. The use of impressed current systems can overcome this shift, but 

care must be taken to ensure not to over-polarize the system and increase the risk of cathodic 

disbondment and hydrogen embrittlement of the pipeline. The variation observed in the potential 

profiles from Figure 10c prompted further investigation into the sensitivity of the potential 

distributions with different mean resistivity values and cyclical amplitudes. Figure 11 presents the 

resulting potential profiles for two systems, each characterized by distinct mean resistivity levels 

and swing amplitudes. 

 

Figure 11: Comparison of the potential distribution under the high and low resistivity 

season for a) mean soil resistivity 5e3 with 1e3 cyclical amplitude and b) mean soil 

resistivity 1e3 and 5e2 cyclical swing  

As shown in Figure 11, the impact of seasonal fluctuations is highly sensitive to the underlying 

mean soil resistivity of the system. It is clear that the higher resistivity region is less sensitive to 

the assumed seasonal fluctuations as compared to the lower resistivity region. This can also be 

seen in the calculated residuals between the high and low resistivity seasons for the two regions 

shown in Table 4.  

Table 4: Quantitative Comparison of Potential Residuals Between the Season 

Region Max (V vs CSE) Min (V vs CSE) Average (V vs CSE) 

High Resistivity Region 0.106 1.8e-6 0.058 

Low Resistivity Region 0.292 2.3e-6 0.150 
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For the high resistivity region, the maximum difference in the potential profiles was around 100 

mV vs CSE, while for the lower resistivity region, the maximum difference nearly tripled to around 

290 mV vs CSE. This increased sensitivity to seasonal fluctuations in low-resistivity regions must 

be carefully considered when designing and installing a CP system. Larger seasonal swings in the 

potential profile can result in misestimating the required level of protection, potentially leading to 

under-protection, and allowing corrosion to propagate unchecked. 

Effect of Holiday Activity and Feature Size on Defect Detection 

Detecting defects in pipeline coatings requires either a measurable change in pipe-to-soil potential 

(as in CIPS), a detectable gradient in the system’s potential distribution (DCVG/ACVG), current 

attenuation analysis, or in-line inspection techniques. All of these methods depend on high-

resolution surveys capable of identifying small-scale anomalies. When modeling relatively long 

pipeline segments (>50 km), mesh validity becomes a challenge. Simulating localized defects, 

often on the order of centimeters, within a coarse mesh can lead to numerical instability and 

incoherent results. To address this, a two-tiered modeling approach is employed: a coarse global 

model is first used to compute the general potential distribution across the pipeline. Then, targeted 

high-resolution sub-models (~100 m in length) are applied to specific regions to resolve local 

potential, transverse current, and interfacial impedance distributions. The averaged interfacial 

impedance values from these refined sub-models are then reintegrated into the coarse model, 

enabling a simplified yet representative simulation of regions with possible defects. 

The system used for the high-resolution sub-model was a 100m length of pipeline with defects of 

various sizes and activities located in the center of the simulated region. To assign the boundary 

conditions of the model, the potential at the edges of the sub-model was set to the same values 

obtained in the initial macro-scale simulation. The soil resistivity was the same over the sub-model 

domain as in the coarse model. A summary of the holiday activity and sizes is shown in Table 5.  

Table 5: Over view of sub-model parameters  

Model Parameter Values 

Holiday Radius 1, 10, 50 cm 

Holiday 𝑹𝒄𝒕 1e8, 1e5, 1e2 𝛀cm2 

Three holiday sizes were selected to span a range from small to large with areas varying from 

100⁡cm2 to  103⁡cm2. Correspondingly, three activity levels were defined to represent different 

surface conditions that may occur at the pipeline surface. If we assume that the anodic and cathodic 

reactions occurring at the interface were shown by Equations 11 and 12 respectively20:  

𝐹𝑒⁡ → 𝐹𝑒2+ + ⁡2𝑒− (11) 

2𝐻+ + 2𝑒− → 𝐻2 (12) 

Focusing on the anodic dissolution of iron (Equation 11), a high charge transfer resistance (𝑅𝐶𝑡) 
indicates a high level of cathodic protection, effectively suppressing the reaction. As 𝑅𝑐𝑡 
decreased, the anodic reaction accelerated, reflecting reduced protection and increased surface 
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activity.  

The two-tiered modeling testing was performed on the same assumed pipeline system from the 

previous section, assuming the soil resistivity distribution under the low resistivity season. Figure 

12 shows the baseline potential distribution of the assumed system, with a marking at 50km 

showing where the assumed defect in the pipelines coating will be present. 

 

Figure 12: Baseline potential distribution curve used for two-tiered simulation with a defect 

located at 50km (boxed area)  

To investigate the influence of defect size and activity, the local potential profiles are presented in 

Figure 13. Figure 14 includes the maximum, minimum, and average values of |𝑍𝑇| and 𝑖𝑇, 

providing a quantitative summary of the systems interfacial impedance and transversal current 

response. The calculated local potential distribution reveals that the detectability of coating 

holidays depends on both their size and activity level (𝑅𝑐𝑡). For the 1 cm radius holiday shown in 

Figure 13a, there was minimal difference in the potential profile between the intact coating and 

cases where 𝑅𝑐𝑡 was assumed to be 1e5 or 1e8 Ωcm. A significant deviation in the potential 

distribution only emerged when the holiday exhibited the highest level of activity. This trend 

became more pronounced with increasing holiday size, where even moderate activity levels were 

more likely to influence the system’s potential distribution. Suggesting that larger defects would 

become detectable at lower activity levels, while smaller holidays require higher activity to have 

the same impact. 
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Figure 13: Comparison of the potential distributions for a) defect with 1 cm radius, b) 

defect with 10 cm radius and b) defect with 50 cm radius at various activity levels  

 

Figure 14: Comparison of the statistical values for |𝒁𝑻| and 𝒊𝑻 for a) defect with 1 cm 

radius, b) defect with 10 cm radius and b) defect with 50 cm radius at various activity levels  
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A comparison of the average |𝑍𝑇| values in Figure 14, and with the corresponding potential 

distributions shows that significant changes to the potential profiles occur when the average |𝑍𝑇| 
dropped 109⁡Ωcm. Below this threshold, the model predicts a potential distribution that is 

measurably different from the intact coating scenario. The maximum |𝑍𝑇| and minimum 𝑖𝑇 are 

governed by the coating properties. Both parameters exhibit consistent trends: as defect activity 

increases, the average and minimum |𝑍𝑇| decrease proportionally. The 𝑖𝑡 displayed an inversely 

proportional relationship to that of the |𝑍𝑇| where the current density would increase in the 

defective area with increasing activity. 

Using the calculated average |𝑍𝑇| values for the 100 m region, the potential and interfacial 

impedance profiles of the system modeled in Figure 15 were updated accordingly. Figure 15a 

represents the potential profiles incorporating the updated |𝑍𝑇| values for the defective region, 

while Figure 15b shows the corresponding interfacial impedance distribution for the system. For 

the defective region centered around 50 k, the interfacial impedance was assumed to be constant 

through the region. Four |𝑍𝑇| values were chosen two at or above 109⁡Ωcm and two values below. 

This was chosen to see if the trend of the coarser global region had similar behavior to the local 

simulations.  

 

Figure 15: Comparison of the potential distribution for a) various regions with different 

levels of assumed interfacial impedance distributions using the calculated average |𝒁𝑻| 
values, and b) |𝒁𝑻| distribution over the region  

Figure 15b reveals a deviation from the trend observed in the local simulations. When |𝑍𝑇| was 

set to 4.1e9⁡Ωcm, there was a pronounced change in the overall potential profile in the global 

simulation when contrary to expectations from the local simulations. This discrepancy most likely 

stems from the assumption that the interfacial impedance region is a single and uniform value over 

the entire region. By assigning a single |𝑍𝑇|, the model assumed that each point in that region had 

an imposed uniform and higher of 𝑖𝑇 throughout the region, resulting in an exaggerated shift in the 

potential profile. 

Task 2. Integrating field inspection, theoretical, and experimental data by applying pattern 

recognition techniques relating the pipeline-coating-soil system with CP  

Effective pipeline integrity management requires a holistic understanding of the coupled pipeline 

coating soil system and its interaction with cathodic protection (CP). Each component contributes 

unique uncertainties: field inspections (e.g., close interval potential survey, inline inspection) 
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provide point-wise or distributed evidence of anomalies, whereas theoretical models (e.g., 

transmission line model) offer mechanistic predictions and experimental data (e.g., soil resistivity 

tests, coating disbondment) characterize localized behaviors under controlled conditions. 

Integrating these heterogeneous data sources demands a common framework that can extract 

patterns across scales and modalities.  

 

As an initial step in this integration, we focused on soil heterogeneity. In earlier work, we 

conducted a detailed feature analysis to identify independent and informative variables influencing 

pipeline external corrosion. Building on this foundation, our recent efforts centered on determining 

the number of underlying soil groups along the pipeline right-of-way (ROW). This was achieved 

using an in-house developed Bayesian clustering algorithm that accounts for both spatial and 

statistical behavior of the soil properties. The clustering process begins with identifying the 

optimal number of clusters for a given soil dataset. Because clustering techniques rely on different 

data properties, several evaluation measures are used to determine the best fit. For model-based 

clustering, the Approximate Weight of Evidence Criterion (AWE) is commonly applied. When the 

Expectation–Maximization (EM) algorithm is employed to estimate the maximum likelihood of a 

mixture model, an approximation to AWE known as the Bayesian Information Criterion (BIC) 

becomes particularly useful. The BIC is expressed as 

 

𝐵𝐼𝐶 = 2𝑙𝑜𝑔𝑙𝑖𝑘𝑒(𝑥, 𝜃) − 𝑀𝑙𝑜𝑔(𝑛) (13) 

 

where, 𝑙𝑜𝑔𝑙𝑖𝑘𝑒(𝑥, 𝜃)is the maximized log-likelihood, M is the number of independent 

parameters to be estimated, and n is the number of data points. A higher BIC value indicates a 

better model. This is because a well-fitting model yields a higher log-likelihood, while 

minimizing the number of parameters(M). Using the selected features, the number of clusters 

was determined by assuming a k-component multivariate Gaussian mixture distribution. Figure 

16 shows the application of this approach to one of the pipeline datasets. The number of clusters 

(k) was varied from 2 to 20, and the process was iterated 10 times. The knee point of the BIC 

curve, observed at k = 2, indicates the optimal number of clusters21. This result suggests that the 

soil environment along the studied pipeline segment can be effectively represented by two 

statistically distinct groups. Such grouping provides a meaningful simplification of the 

heterogeneous soil system while retaining the dominant features that influence external corrosion 

risk.  

 

The Bayesian clustering algorithm proceeds by applying the Expectation–Maximization (EM) 

algorithm to extract statistical patterns, such as cluster centers and covariance matrices, from the 

dataset. This probabilistic framework explicitly accounts for uncertainties in the data, ensuring 

robust clustering outcomes. The results of the clustering analysis are shown in Figure 17. 

Figure 18a displays a 2D scatter plot of the first two principal components, with markers 

representing the cluster centers and contours outlining the Gaussian mixture distributions. The 

contours visually demonstrate the probabilistic boundaries of each cluster. Figure 18b presents a 

3D scatter plot of the first three principal components, providing a more comprehensive 

visualization of the clusters. This plot highlights the separation between cluster groups more 

distinctly, confirming the effectiveness of the clustering algorithm in capturing the underlying 

structure of the data.  
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Figure 16: The number of components vs. BIC for full covariance structure, the vertical 

line indicates the possible optimal number of clusters. 

 

Figure 17: Clustering Results corresponding to k = 2 
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Figure 18: (a) Scatter plots of two principal components with centroid and contour for 2 

clusters. (b) 3D scatter plots of three principal components. 

Next, we examined the field inspection data. The CP potential measurements obtained from a 

close interval survey (CIS) for the study region are visualized in Figure 19. Additionally, the 

metal loss depth, as estimated from an inline inspection (ILI) survey, was spatially aligned with 

the CIS data and overlaid for comparison. The analysis reveals a potential correlation between soil 

heterogeneity and regions of significant metal loss, underscoring the importance of understanding 

the coupled relationship between soil properties, CP response, and pipeline integrity. 

 

Figure 19: CP potential measured along the pipeline right of way aligned with ILI 

measured metal loss depth. 

Building upon the initial theoretical framework developed by the Texas A&M team based on 

laboratory experiments, we began our analysis of the CIS data by addressing the global trend 

induced by the influence of rectifiers and anodes. The CP potentials originating from rectifiers 

typically exhibit an exponential decay with increasing distance from the source. Based on the 

dataset, the locations of rectifiers were identified at 431.6467 km and 471.612 km, as highlighted 
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in Figure 20a. To prepare the CIS data for detailed analysis anomalous CIS measurements 

inconsistent with surrounding trends were identified and filtered. Then an exponential decay 

function was fitted to the potential profiles around the rectifier locations, modeling the underlying 

global trend attributable to current discharge from rectifiers and anodes. The fitted curve, shown 

in Figure 20b, captures the baseline exponential attenuation of CP potentials with distance. This 

initial verification represents the first explicit link between theoretical predictions and 

observed field data, thereby bridging laboratory models with in-field measurements. Building on 

this foundation, we developed a Bayesian framework to systematically connect theory and 

observations, as described in Task 3. 

Figure 20 (a): CIS on potential with location of rectifiers influencing the data. (b) Fitted 

global trend representing potential decay. 

Field data validation 

To demonstrate feasibility, we first applied our framework to a 56 km pipeline by coupling a 

forward Transmission Line Model (TLM) with field-measured soil resistivity profiles and using 

Close Interval Potential Survey (CIPS) voltages as the observed data. The pipeline was discretized 

into ~28 segments (2 km each), with each segment’s coating resistance treated as an unknown 

inference parameter. We performed Bayesian inversion using the No-U-Turn Sampler (NUTS) in 

PyMC, yielding posterior distributions and 95 % credible intervals for each segment’s impedance 

as shown in Figure 21. As seen in Figure 4(a), the posterior predictive mean potentials (solid line) 

closely track the observed CIPS voltages, capturing both the overall trend and local fluctuations. 

Figure 21b plots the segment-wise posterior mean coating impedance (solid curve) together with 

95 % credible intervals (shaded). Variability in impedance is notably low at the anode locations 

where concentrated CP current drives the posterior to tighten, while mid-span segments between 

rectifiers exhibit both lower mean impedances and wider credible intervals, flagging these zones 

as potential coating degradation hotspots. 
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Figure 21: (a) Observed vs Predicted potential (b) Coating Impedance along pipeline right 

of way 

Further validation was done by applying the model to a 110km pipeline as shown in Figure 22. 

The pipe was discretized into 2km segments again resulting in approximately double inference 

parameters. A major challenge in the Bayesian TLM implementation is the computational time 

required to sample from a high‐dimensional posterior. With ~55 coating‐resistance parameters, 

each NUTS iteration requires solving the TLM forward model (a sparse linear system) 55 times 

per leapfrog step to evaluate gradients, dramatically increasing per‐sample cost. Achieving 

adequate effective sample sizes typically demands tens of thousands of iterations, further 

compounding runtime. 

 

Figure 22: (a) Observed vs Predicted potential, (b) Coating Impedance along pipeline right 

of way 

Future work will focus on replacing the current fixed 2 km segmentation with an adaptive 

discretization scheme that dynamically refines the mesh where it matters most. In practice, this 

means allowing users or an uncertainty‐driven algorithm to specify regions of interest (e.g., zones 

with wide posterior credible intervals or suspected coating defects) and automatically subdivide 

those areas into shorter segments (e.g., 500 m or finer). Coarser segmentation would be retained 

in regions of low uncertainty to preserve computational efficiency. By coupling this adaptive mesh 

refinement to the Bayesian updating loop, segment granularity evolves as new CIPS data arrive, 

the digital twin will deliver higher‐resolution impedance estimates exactly where they’re needed, 

guide targeted inspections, and reduce unnecessary computation in benign sections of the pipeline. 
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Task 3. Development and validation of the Bayesian machine learning framework with 

experimental and field conditions 

The goal of Task 3 is to establish a Bayesian machine learning framework that integrates 

theoretical predictions, experimental findings, and field inspection data to quantify the interactions 

within the pipeline–coating–soil–CP system. The framework was built on the foundation 

established in earlier tasks:(i) the theoretical models developed by the Texas A&M team that 

capture current and potential distributions along the pipeline. (ii) experimental datasets 

characterizing coating degradation, soil resistivity, and electrochemical impedance, and (iii) field 

inspection data from CIS and ILI surveys. 

 
The proposed framework has three main components 1) the prior distributions 2) the physics 

engine and 3) the evidence which together yield the posterior distributions of the parameters as 

shown in Figure 23. Our aim is to infer the spatially varying coating impedance from CIPS within 

a Bayesian framework. Hence the primary latent variable is the per unit coating impedance. To 

encode the spatial heterogeneity of soil we incorporate the measured soil resistivity as the 

informative prior, i.e., using it as a mean function for the soil resistivity field.  

Figure 23: Bayesian Transmission Line Model framework 

 

The TLM forward model produces potential profiles given priors on interface and soil properties, 

but these are only predictions under assumptions. Incorporating evidence, the measured CIPS 

potentials, via a realistic likelihood is what turns the model into an inference engine by Bayes’ 

rule,  

𝑝(𝜃|𝑉)=
𝑝(𝑉|𝜃)𝑝(𝜃)

𝑝(𝑉)
 (14) 
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where 𝜃 is the set of all parameters that includes the interface impedance ZT and soil resistance Rs, 

and V is the measured CIPS potentials (evidence). Hence the data reweight the prior to yield a 

posterior over spatial interface impedance and associated predictive intervals. In short, aligning 

TLM outputs with evidence from the field measurements via a probabilistic framework is the 

mechanism that moves us from belief to actionable, uncertainty-quantified decisions. 

 
Rather than producing a single deterministic profile of interface impedance, the posterior yields 

probabilistic spatial maps that capture both the most likely values and the uncertainty associated 

with them. This is critical in practice: a high posterior probability of low impedance at a given 

station suggests a degraded interface, while wide credible intervals highlight areas where the 

evidence is weak or ambiguous. From the posterior we can derive uncertainty bands on interface 

impedance, compute the probability of degradation at each meter, and generate posterior predictive 

traces of potential that can be directly compared to observed CIPS data. These outputs enable 

engineers to move beyond threshold-based interpretations, providing a defensible basis for risk-

informed decisions such as excavation prioritization, scheduling follow-up surveys, and refining 

integrity management strategies. In this way, the posterior is the core outcome of the Bayesian 

TLM framework it turns physics-based modeling and noisy survey data into actionable, 

uncertainty-aware guidance for pipeline integrity. 

 
To demonstrate feasibility, we applied our framework to a 50 km pipeline by coupling a forward 

TLM model with field-measured soil resistivity profiles and using CIPS voltages as the observed 

data. The pipeline was discretized into segments of approximately 1 km each, with each segment’s 

interface impedance treated as an unknown inference parameter. There are two CP anodes present 

at locations of 5.76 km and 45.61 km along the right of way (ROW). The posterior distributions 

and 95 % credible intervals for each segment’s impedance as shown in Figure 24. The Bayesian 

TLM framework reveals spatial variability in coating condition. In several sections, the posterior 

mean impedance drops by multiple orders of magnitude, indicating zones where the coating is 

likely degraded. As expected, impedance is lowest at the anode locations, where current enters the 

system and the credible interval the thinnest. Narrow credible intervals in some stretches suggest 

high confidence in the inferred impedance, while wider intervals reflect areas where the evidence 

is weaker, the data noisier, or soil resistivity less constrained. To validate these findings, we 

overlaid the inline inspection data on metal loss along the ROW as seen in Figure 2 right y axis. 

Importantly, the low-impedance regions of the lower-bound align with clusters of ILI metal loss 

supporting the interpretation that where the coating is inferred to be weak, corrosion activity has 

progressed to measurable wall loss. Conversely, regions of consistently high impedance with tight 

uncertainty bounds show fewer ILI anomalies, consistent with effective cathodic protection and 

intact coating. 

 
Further, the posterior distribution of predicted potential with credible intervals (CI) gives a direct 

check of how well the model captures the observed evidence, as shown in Figure 25. The predicted 

potentials are generated by propagating posterior samples of coating impedance and soil resistivity 

through the transmission-line model, yielding a full distribution of possible potential traces along 

the right-of-way. The posterior mean closely follows the measured instant-OFF CIPS voltages, 

while the shaded 95% credible intervals quantify the range of predictions consistent with both the 

priors and the observed data. Together, Figure 24 and 25 confirm that the framework provides 
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both cause (coating condition via impedance inference) and effect (voltage response via posterior 

potentials), with uncertainty quantified at each step.  

Figure 24: Posterior distribution of interface impedance with 95% credible interval along 

the 50km pipeline right of way (left-axis) overlaid with inline inspection metal loss (right 

axis) 

Figure 25: Posterior distribution of predicted potential with 95 % credible interval along 

the 50km pipeline ROW 

 
Further testing was carried out on a second, longer pipeline of approximately 110 km. This asset 

was again discretized into ~1 km segments, with each segment’s interface impedance treated as an 

unknown parameter within the Bayesian TLM framework. This system has a greater number of 

anodes present at locations [1.63,   4.74, 24.25, 26.92, 42.11, 47.57, 52.39, 68.97, 90.19, 100.40, 

111.58]. The posterior impedance distributions (Figure 26) reveal clear spatial variability. As 

expected, interface impedance values are lowest near the anode locations, reflecting the strong 

current injection points and higher protective current density. Between anodes, impedance 

increases gradually, with localized drops where the framework infers degraded coating. The 
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posterior predictive distribution of CP potentials (Figure 27) also demonstrates strong agreement 

with measured CIPS voltages. The predictive mean closely follows the observed OFF potentials 

across the full 110 km, while the 95% predictive bands expand in sections with higher noise or 

soil variability. 

 

Figure 26: Posterior distribution of interface impedance with 95% credible interval along 

the 110km pipeline right of way (left-axis) overlaid with inline inspection metal loss (right 

axis) 

While the Bayesian TLM framework provides a rigorous and uncertainty-aware approach for 

interpreting CIPS data, there are certain limitations. First, the framework is highly dependent on 

the quality and density of input data. Noisy or poorly synchronized CIPS records can widen 

posterior uncertainty and reduce effective resolution. Here, resolution refers to the smallest 

segment length over which the interfacial impedance can be meaningfully inferred; in the present 

study this was 1 km. The minimum achievable resolution is ultimately constrained by the density 

of CIPS measurements, since the evidence defines the likelihood. Where data are sparse, the 

posterior is driven primarily by the prior, and results may simply reflect smoothness assumptions 

rather than true field variability. 

Second, posterior sampling for long pipelines is computationally intensive. With hundreds of 

inference parameters, Hamiltonian Monte Carlo (HMC) or related sampling methods can become 

slow, making real-time or near-real-time deployment impractical without algorithmic 

improvements, surrogate models, or dimensionality reduction strategies. In practice, it is often 

more efficient to analyze pipelines in smaller sections, where computational demands remain 

tractable and uncertainty estimates are better constrained. 



33 
 

Figure 27: Posterior distribution of predicted potential with 95 % credible interval along 

the 110km pipeline ROW  

Application to two case studies demonstrated the feasibility, scalability, and robustness of the 

approach. In both cases, the framework captured spatial variability in coating condition, correctly 

reflecting low impedance at CP anode locations and highlighting degraded segments through 

impedance drops spanning multiple orders of magnitude.  

Further validation was conducted using field datasets collected from the same pipeline in 2018 

and 2024. Figure 28 shows the posterior distribution of predicted CP potential (ϕ) with 95% 

credible intervals along the pipeline ROW for both years. The black markers represent observed 

CIS measurements, while the colored bands depict model predictions and associated uncertainties. 

In 2018 (Figure 28, top), the framework reproduced the general CIS trends, but wider credible 

intervals reflect greater uncertainty due to localized variability and limited prior calibration. By 

2024 (Figure 28, bottom), the model showed significantly improved agreement with observations, 

capturing sharper potential drops and localized under-protection zones with narrower credible 

intervals.  



34 
 

 

Figure 28: Posterior distribution of predicted CP potential (ϕ) with 95% credible intervals 

along the same pipeline ROW for 2018 and 2024. 

Figure 29:  Posterior distribution of interface impedance with 95% credible of the same 

pipeline for years 2018 and 2024 

The inferred pipeline coating soil interface impedance was compared across the two survey 

years. Figure 29 presents the overlay of impedance distributions for 2018 and 2024 along the 
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pipeline ROW. The results highlight distinct temporal changes in interface behavior. There will be 

study done in future to better understand the data. 

The present study demonstrates the feasibility of the Bayesian TLM framework, and a critical next 

step is to validate the results through direct field verification of pipeline condition. A test-bed 

pipeline has already been identified, and planned excavations and inspections are expected to 

provide the ground-truth data necessary to further validate the methodology. 

 Task 4 – Development and validation of the methodology for ECDA based on CP levels  

Proposal for Non-Destructive Monitoring of Buried Pipeline Health in RELLIS Campus  

We will perform a 2 – 3-month monitoring program of non-destructive electrical and 

electrochemical measurements to assess the integrity of buried pipelines on the RELLIS 

Campus. We are planning on using established techniques such as: close interval potential survey 

(CIPS), DC/AC voltage gradient (DCVG/ACVG), and pipeline current mapping (PCM). These 

techniques will be used to validate a proposed cathodic protection (CP) model developed in the 

National Corrosion and Materials Reliability Center (NCMRC). Importantly the proposed testing 

will be concluded with zero disruption to pipeline services and minimal environmental 

disturbance. 

Objectives 

Site Preparation and Electrical Connection 

1. Select target pipeline segments based on history 

and accessibility. 

2. Determine if existing CP is present: 

o If CP is absent, we will attach a 

temporary sacrificial anode to apply local 

CP. 

3. Excavate a relatively small area for access 

(roughly 30 × 30 cm) to expose the pipeline for 

electrical connection. 

4. Secure all electrical connections using magnetic 

clamps (no welding required). 

5. Backfill the pits and mark locations with 

temporary flags for easy re-exposure and extraction 

of electrical connections and anodes 

 

Figure 30:  Example of 

Magnetic clamps to be used for 

electrical connection 
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Test Methods  

Technique Purpose 

CIPS Measure the pipe-to-soil potentials in short length intervals (~ 1m) 

DC/ACVG Detect voltage gradients in the soil due to coating defects 

PCM Map current distributions in the pipeline from CP system 

Test Protocol and Schedule  

Activity Frequency Description  

NDE Measurements  Weekly 
Measurements will be performed weekly for 2 – 

3 hours per pipeline segment 

Soil Sampling  Monthly  
Small samples will be taken from the field and 

analysis will be performed in the corrosion lab 

Model Validation 

Testing   
Weekly 

The models output based on the some of the 

field measurements will be compared with the 

CIPS data for model validation  

Environmental and Safety Considerations 

• Limit pit footprint to minimize surface disturbance. 

• Refill and restore excavations immediately once connections have been made and after 

connections are removed when testing has ended. 

• Adhere to all safety and excavation protocols 
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4. Future work 

• Continue to update the model with various impedance definitions based on mechanistic 

analysis of processes occurring at the interface  

• Adapt the model for comparison with field data  

• Continue EIS testing and building a database of impedance responses of various systems. 

o Instantaneous EIS vs time-based EIS at OCP.  

o Effect of coating thickness with and without defects   

o CP testing under all coating conditions and coating types 

• Create an empirical relationship between the degradation of coating resistivity based on 

the level of applied polarization for intact coatings exposed to simulated soil 

environment.  

• Continue to characterize the potential decay for the various systems.  

• Create testing protocol and testing matrix for characterizing various defect geometries 

and types with reflectometry 

• Perform Field measurements to validate the methodology for assessing CP in buried 

pipelines. 
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