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Project Activities for Reporting Period: 

In the quarterly report, the teams have changed Principal Investigator (PI), and subcontracts have 
been renewed. Additionally, we organized and conducted routine biweekly meetings continually. 
Building on the previous 9th report, the research team focused on tasks 2.2, 3.1, 4.1, 4.2, 5.1, and 
6.1 during this quarter (Quarter 10). The following sections provide detailed summaries of the 
major activities completed during this reporting period. 

Task 2.2, Formulate the remaining useful life prediction model: During this reporting period, the 
research team, consisting of Dr. Zhibin Lin, Dr. Hong Pan, and Mohsin Ali Khan (UTA), 
developed a framework for remaining useful life (RUL) prediction. A summary of the key 
activities and findings are provided below: 

1) Remailing useful life 
The RUL prediction model includes four parts as shown in Figure 1. The process starts with 
collecting raw data from sensors measuring pressure, temperature, or ultrasonic guided waves 
(UGW). This data is then pre-processed through denoising, feature extraction, and normalization 
to create meaningful features. These features are fed into machine learning or deep learning models 
such as CNNs, LSTMs, Transformers, Autoencoders, or physics-informed hybrids to predict the 
health of the system. The final output includes RUL predictions and anomaly alerts to support 
maintenance decisions.  

 

Figure 1: System architecture and data flow for RUL prediction. 

2) Feature extraction methodology 
Rather than feeding raw signals directly into prognostic models, it is recommended to derive a set 
of features that contain information relevant to material degradation. Feature engineering is guided 
by both domain knowledge (fracture mechanics, wave propagation physics) and data-driven 
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exploration. Table 1 summarized the potential feature extraction methods and the purpose for 
fracture-based RUL. 

Table 1: Preprocessing and Feature Engineering Techniques 

Preprocessing Step Techniques Used Purpose 

Noise filtering Band-pass, low-pass filters, 
Spectral subtraction on UGW 

Remove high-frequency instrumentation noise 
and baseline drift; isolate signal bands of 
interest (e.g. UGW excitation frequency). 

Wavelet denoising Multi-level wavelet decomposition 
with soft/hard threshold, Adaptive 
threshold selection (e.g. minimax or 
SURE criterion) 

Suppress random noise in UGW signals while 
preserving true echo signals. Yields clearer 
defect indications (higher SNR). 

Denoising 
autoencoder 

1D CNN-based autoencoder trained 
on noise-corrupted signals  

Learn complex noise patterns and remove them, 
which will further improve signal clarity for 
small defect detection. 

Outlier removal Z-score outlier detection- Physics-
based bounds (e.g. pressure cannot 
exceed design limit) 

Eliminate specious data points that could be 
bias models. Ensure continuity and consistency 
of time-series. 

Elbow point 
detection 

Kneedle algorithm for curve 
inflection, Segmented regression 
(piecewise linear fit) 

Identify the cycle at which damage progression 
accelerates. Marks transition to critical 
degradation phase for early warning. 

Time domain 
feature extraction 

Peak, mean, range per cycle 
(pressure/strain), UGW echo 
amplitudes, arrival times, Damage 
index (ratio of defect echo to 
baseline) 

Summarize raw time signals into meaningful 
indicators. Capture magnitudes of loads and 
responses that correlate with damage. 

Frequency domain 
feature extraction 

FFT spectral centroid, bandwidth- 
Mode-specific amplitude (e.g. at 50 
kHz tone) 

Detect changes in frequency content due to 
damage (e.g. increased attenuation at high 
frequency). Complements time-domain 
features. 

Time-Frequency 
feature extraction  

Wavelet coefficient energy in 
particular scales, STFT at damage-
sensitive frequencies 

Account for non-stationary signal changes and 
dispersion. Monitors if certain wavelet scales 
(frequency band) lose energy as crack grows. 

Physics-based 
features 

Paris-law model estimate of crack 
length per cycle, Stress intensity 
ΔK per cycle- Hydrogen 
embrittlement factor q  

Introduce domain knowledge into data, i.e., 
approximate how large the crack might be and 
how aggressive the environment is. Helps 
models learn physical connection (higher ΔK 
corresponds to accelerated crack growth). 
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Preprocessing Step Techniques Used Purpose 

Feature Scaling Min-max normalization (0–1), 
Standardization (mean 0, std 1) per 
feature 

Normalize feature ranges to ensure ML model 
training stability and that no single feature 
dominates due to scale. 

Dimensionality 
reduction 

PCA on UGW signal set, 
Autoencoder latent features 

Reduce thousands of UGW signal points to a 
few key features. For instance, the first 3 
principal components capturing > 95% of the 
variance. This compresses data while retaining 
information for the model. 

Data augmentation Add Gaussian noise to features in 
training, Synthesize minor 
variations of cycles via simulation 

Increase training sample diversity (especially 
since failures in real data are rare). This helps 
prevent overfitting and improves model 
robustness. 

Task 3.1, Preparing the near real-world testbed for hydrogen testing: During this reporting period, 
the research team, including Mr. J. Anderson from EERC, continues the testing process, with some 
modification based on safety considerations. The progress is summarized as:  

1) The Project received the go-ahead to resume on the EERC side. 
2) Reviewed the system design and project scope to determine at this point what needs to be ordered 
to begin fabrication in the upcoming months. Currently waiting on some insight/clarification to 
make sure the correct number of materials are specified to ensure costs stay within budget 
parameters. 
3) Upon review of materials, orders will be placed, and fabrication will begin as materials arrive. 
4) Design may change slightly due to space limitations and other equipment use in the area. The 
original pump may not be usable, but a gas booster compatible with hydrogen will be bought instead 
as we currently use a few in different systems, so we have a vendor in mind. 
5) Plan to begin drafting a test plan with NDSU before fabrication is done so after shakedown of 
the system to ensure its safe operation, the test can begin as soon as possible. 
6) Depending on material lead times and EERC operator staff availability, the goal is to be able to 
have the fabrication of the pipeline done before July, as the month of April and May are already 
booked near solid, with a little time here and there to do the smaller portions. The biggest hurdle 
will be the welding and assembly of the pipeline itself, as it will require our certified welder to do 
it between his other obligations. 

Task 4.1 Gaining an understanding of long-term hydrogen impacts, & Task 4.2 understanding of 
hydrogen adsorption and distribution in existing aged pipe materials through macro-scale 
simulation: During this reporting period, the Virginia Tech team, led by Dr. K. Wang, focused on 
hydrogen absorption simulations and finite-element simulation of stress distribution around a pipe 
elbow. These efforts are summarized as follows: 

We have developed a computational model based on Fick’s second law for simulating the transport 
of hydrogen within pipeline components/sections, possibly with pre-stress. Figure 2 shows the 
computational grid for two example cases, featuring a quarter model (with symmetry boundaries) 
of a cylindrical pipe section with different wall thicknesses. 
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Figure 2: Computational grid for two pipeline sections with different wall thicknesses. 

The governing equations being solved is Fick’s second law of diffusion, i.e., 

𝜕𝜑
𝜕𝑡

− ∇ ⋅ (𝐷	∇𝜑) = 0, 

where 𝜑(𝒙, 𝑡) (mol/m3) represents the concentration of hydrogen at any point 𝒙 within the pipe 
wall at any time 𝑡 > 0. A Dirichlet boundary condition,  𝜑 = 𝜑!, is specified on the inner wall of 
the pipe corresponding to the hydrogen concentration in the transported gas, and possibly surface 
roughness and defects (see previous progress report). 

In the equation, 𝐷 (𝑚"/𝑠) represents the diffusivity of hydrogen within the pipeline material (e.g., 
steel). In an idealized case where the pipe material is homogeneous, has no defects, and under no 
stresses, 𝐷 can be treated as a constant coefficient. We have used this idealized case to verify our 
in-house solver, yielding the result shown in Figure 3 below. (A rectangular domain is used in this 
test case.) 

 

Figure 3: Steady-state solution of Fick’s second law with constant diffusivity, 𝐷. 

In practice, however, 𝐷 depends on many factors, including but not exclusive to 

- Microscopic material defects, such as dislocations and grain boundaries. The hydrogen 
diffusivity tends to be higher within and near these defects. 

- Macroscopic material defects such as those caused by welding 
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- Pre-existing stresses --- In particular, tensile stresses tend to promote hydrogen diffusion 
absorption, while compressive stresses tend to hinder hydrogen absorption 

- Material variation such as near welded joints  

Therefore, in our studies, we need to treat 𝐷 as a variable, accounting for these factors. We have 
started with considering 𝐷 as a function of pre-existing stress. For this purpose, we first conducted 
a finite-element stress analysis for a pipe elbow, as shown in Figure 4 below. 

  

Figure 4: Finite-element simulation of stress distribution around a pipe elbow. Left: Maximum principal 
tensile stress; Right: Maximum shear stress. 

Next, we plan to adopt an empirical model for 𝐷 as a function of the maximum principal tensile 
stress obtained from the finite element structural mechanics analysis, an re-run the hydrogen 
diffusion simulations. Furthermore, we plan to account for the reciprocal effects of hydrogen 
concentration on the pipe material’s mechanical properties --- generally speaking, absorption of 
hydrogen increases the extent and magnitude of defects, which leads to material degradation (e.g., 
lower Young’s modulus values). This will leads to a weakly two-way coupled analysis in which 
the hydrogen diffusion simulation and the structural mechanics analysis are conducted iteratively 
with parameters updated based on the latest results obtained from the other solver. 

So far, all the simulations have been conducted using the VT research team’s in-house open source 
solvers: M2C and Aero-S. As a back-up plan, we have also obtained access to COMSOL 
Multiphysics, which can also conduct some, if not all, of the simulations. 

Task 5.1, Develop the fracture based remaining useful life prediction model: During this quarter, 
the research team, including Dr. Zhibin Lin and Dr. Hong Pan from UTA, and Mohsin Ali Khan 
from UTA, continued their research on physical informed deep learning models for remaining 
useful life predictions especially Paris’ Law based remaining useful life prediction. Their findings 
are summarized as follows: 

In fracture mechanics, the RUL can be estimated using crack growth variation under cyclic loading 
conditions. Paris’ law gives the crack growth per cycle: 𝑑𝑎/𝑑𝑁 = 𝐶 × (𝛥𝐾)#, where a is crack 
length, N are the number of cycles, ΔK is stress intensity factor range, and C, m are material 
constants determined empirically. For X52 steel in air, certain C, m under the hydrogen 
environment, are increased which reflects the accelerated crack growth rate. Researchers have 
extended Paris’ law for hydrogen environments and introduced factors dependent on hydrogen 
pressure, loading and frequency. An empirical model presented express as: 

𝐶$%& = 𝐶'() × [1 + (4.6 − 4.6 × 𝑒*!.!,-) × A3"(/01) × 𝑓*!.!3 × 𝑞E 
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where P is hydrogen pressure (MPa), R is stress ratio, f loading frequency, and q a hydrogen 
sensitivity factor. The presented equation modifies the Paris law coefficient C to account for 
hydrogen effect. The factor q is further related to steel composition and strength i.e., higher yield 
strength or certain alloy elements can change q. 

𝑞 = 1.072 + 0.00011(𝑌𝑆) − 0.5161(𝑀𝑛) 
We aim to incorporate a physics-based RUL estimation. Paris’ law modified for hydrogen provided 
crack growth cycle-by-cycle. An assumed initial flaw size (from fabrication or worst-case 
undetected crack), we can integrate da/dN until the crack reaches a critical size acrit (where failure 
by fracture is expected). This could be helpful to provide a physics-estimated life 𝑁4$%5. Because 
from sensor data, we can continuously update this estimate. For instance, if UGW signals suggest 
a crack has grown faster than expected, we can adjust the current crack length input. Essentially, 
the physics model runs in parallel with the ML model. It provides an RUL estimate based on known 
physics. However, due to model uncertainties (exact ‘C’ and ‘m’ for given hydrogen mix, or initial 
flaw unknown), the physics-alone RUL might be inaccurate. For instance, hydrogen effects might 
not be fully captured by a single C factor, but multiple regions of crack growth behavior can occur. 
Therefore, it is recommended that we not rely solely on the Paris law output but use it as a feature 
and a consistency check. 
 

Task 6.1, Examine the potential of transformer-based model for guidelines/best practices 
summarization: During this quarter, the research team, including Dr. Zhibin Lin, Dr. Hong Pan, 
and Mohsin Ali Khan from the University of Texas at Arlington (UTA) investigated the potential 
of leveraging transformer-based models (e.g., GPT) to summarize and elucidate best practices and 
guidelines. Their findings are summarized as follows: 

Transformer-based models, such as GPT, have demonstrated strong capabilities in processing and 
understanding large volumes of unstructured text. Their ability to capture long-range dependencies 
through self-attention mechanisms makes them well-suited for identifying key themes, extracting 
actionable insights, and generating concise summaries from complex technical documents. When 
applied to engineering guidelines, these models can automatically distill lengthy reports into 
structured summaries, highlight critical recommendations, and rephrase domain-specific 
instructions into more accessible language for diverse stakeholders. 
 
The team explored using pre-trained language models fine-tuned on domain-specific corpora to 
improve accuracy and relevance. These models can not only identify the best practices across 
multiple documents but also compare and contrast conflicting recommendations, providing a more 
coherent interpretation of standard procedures. Moreover, transformer models are capable of 
organizing extracted information into categories such as safety protocols, operational thresholds, 
inspection routines, and maintenance schedules—enabling better traceability and decision support. 
In summary, transformer-based models show strong potential for automating the summarization of 
best practices and enhancing the clarity and usability of engineering guidelines. This capability can 
significantly reduce the manual effort required to interpret technical documents, promote 
standardization, and facilitate knowledge transfer across teams and projects. 

Project Financial Activities Incurred during the Reporting Period: 

The cost breakdown for each budget category during the reporting period is presented in Table 2. 
The PI change and subaward process were completed at the end of January; please note that the 
associated costs were delayed due to administrative processing between institutions. 

Table 2 Cost breakdown during the reporting period (Q10) 
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Category Amount spent during Q10 
Personnel  

Faculty $0.00 
Postdoc $0.00 
Students (RA and UR) $0.00 
Benefits $0.00 

Operating Expenses   
Travel $0.00 
Materials and Supplies $0.00 
Recharge Center Fee $0.00 
Consultant Fee $0.00 

Subcontracts $25,575.99 
Indirect Costs $0.00 

Project Activities with Cost Share Partners: 

As previously mentioned, the PI change and subaward process were completed at the end of 
January. Due to the subcontract suspension, there have been no significant expenses during this 
period; as a result, the matching funds have also been paused. Moving forward, matching funds 
will primarily be provided through RA tuition waivers for those continuing work on this project. 

Project Activities with External Partners: 

During this reporting period, the research team meets regularly bi-weekly, and the sub-universities 
have researched as planned.  

Potential Project Risks: 

No potential risks were noticed during this reporting period.  

Future Project Work: 

During the upcoming quarter, the research team will persist in their efforts on Tasks 2.2, 3.1, 4.1, 
5.1, and 6.1, with a specific emphasis on accelerating task 3.1 for near real-world testbed. 

Potential Impacts on Pipeline Safety: 

The hydrogen absorption simulation results provide a strong foundation for future safety-related 
hydrogen simulations, offering insights into material behavior under hydrogen exposure. In 
parallel, deep learning models for remaining Useful life prediction can accurately forecast system 
degradation. Combined with simulation and experimental results, this approach can enhance 
predictive maintenance and improve the safety and reliability of hydrogen pipeline infrastructure. 


