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Project Activities for Reporting Period: 

 

Task 1. Designing and building the physical prototypes in laboratory conditions and 

deterministic modeling. 

 

In continued efforts to create a deterministic model for modeling the potential distribution 

in cathodically protected pipelines, validation was performed both on the lab and field scale. 

Validation on the lab scale was continued by comparing the output of the 2D TLM using 

mechanistic definitions for the interface impedance with experimental data. To begin validating 

the model in the larger field scale, the initial model was extended to a quasi-1D case where the x-

direction of the model (length of the pipeline) is on the order of kilometers while the y-direction 

(circumference of the pipeline) is on the order of meters.  

To first verify the validity of the numerical model, it was compared with a commonly used 

analytical model that explains the potential distribution in a buried pipeline under cathodic 

protection. For a homogenous system with constant soil resistance and coating impedance, the 

analytical solution for the potential distribution was defined as:  

 

 

Φ(𝑥) = Φ𝑚𝑖𝑛cosh(𝛼(𝑙 − 𝑥)) (1) 

Φ𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = Φ𝑚𝑖𝑛cosh(𝛼𝑙) (2) 

𝛼 = √
𝑅𝑠

𝑍
 (3) 

  

The boundary conditions for the system are at 𝑥 = 0,  Φ = Φ𝑎𝑝𝑝𝑙𝑖𝑒𝑑 and 𝑥 = 𝑙,  Φ = Φ𝑚𝑖𝑛, where 

Φ𝑚𝑖𝑛 was assumed to be −850𝑚𝑉𝑣𝑠𝐶𝑆𝐸 and Φ𝑎𝑝𝑝𝑙𝑖𝑒𝑑 was the minimum potential needed to 

be applied to reach the minimum potential at the end of the pipeline. Figure 1 shows the 

comparison of the TLM with both homogenous and heterogenous coating conditions with the 

analytical solution.  
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Figure 1: Comparison of TLM output with analytical solution. Parameters used in the model are: 𝝈𝒔 =

𝟏𝟓𝟎
𝝁𝑺

𝒄𝒎
, 𝑹𝒄𝒐𝒂𝒕𝒊𝒏𝒈 = 𝟏𝒆𝟔

𝛀

𝒎
, 𝑹𝒉𝒐𝒍𝒊𝒅𝒂𝒚 = 𝟓. 𝟕𝟓𝒆𝟐

𝛀

𝒎
, 𝚽𝒎𝒊𝒏 = −𝟎.𝟖𝟓𝟎 𝑽𝒗𝒔𝑪𝑺𝑬,𝚽𝒂𝒑𝒑𝒍𝒊𝒆𝒅 =

−𝟎.𝟗𝟕𝟏 𝑽𝒗𝒔𝑬𝑪𝑺𝑬 

 

From Figure 1 it can be seen that the homogenous TLM output agrees with the analytical 

solution with little to no deviation between the two outputs. With the introduction of a low 

impedance segment to the pipeline there was a fundamental change in the potential distribution 

compared to the homogenous case. Showing that with the proper definition of impedance terms 

and distribution of impedance and soil resistivity values it is possible to simulate potential maps 

for buried pipeline systems.  

 
 Numerical analysis of the potential distribution model was performed to understand the 

effects of input parameters on the resulting potential profiles. Analysis was performed for finite 

pipelines and infinite pipelines, the key difference between the two assumptions are the boundary 

conditions at left and right boundaries of the model. For finite pipelines it is assumed that at the 

boundaries the assumed potential is at the minimum protection potential, while for infinite case 

the potential approaches zero as the distance goes towards infinity. Figure 2 and  

Figure 3 show the effect of soil resistivity and coating impedance on the potential distribution 

for pipelines with singular or multiple potential application points. With changing soil resistivity, 

it can be seen that with increasing resistivity there is a faster change in potential towards more 

positive values relative to lower resistivities. This can be clearly seen in Figure 2b where with a 

change from 1e4 to 1e5 Ω-cm the potential at the boundary goes from around -1.25 V vs CSE to 

near -0.850 V vs CSE. With the application of potential at multiple sites across the pipeline it is 

possible to stay below -0.850 V vs CSE even in the higher resistive media. For a system with 

only a single potential application point and soil resistivity of 1e6 Ω-cm potential quickly rises to 

around -0.850 V vs SCE, but will multiple potential application sites the modeled potential stays 

below -1V vs CSE over the entire domain.  
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Figure 2: Effect of soil resistivity on a) finite and b) infinite pipeline with single potential application 

point, and c) finite and d) infinite pipeline with multiple potential application points.  

 

The overall effect of coating impedance on the potential distribution occurred over a much 

smaller region compared to the role of soil resistivity. With changing coating impedance, it can 

be seen that with decreasing coating impedance, there is a faster change in potential towards 

more positive values relative to higher coating impedances. In  

Figure 3b it can be seen that with just a single order of magnitude difference, there is a large 

change in the potential distribution behavior between the two pipelines. Using multiple potential 

application points was not as to keep the modeled potential distribution below the minimum 

potential level. The overall potential distribution is sensitive to both soil resistivity and coating 

impedance values, but the system is more sensitive to smaller changes in coating impedance 

compared to the soil resistivity.  

 

Figure 4a shows the effect of heterogeneous soil resistivity and coating impedance on the 

potential distribution for a pipeline with multiple potential application sites. The spatial 

distribution of the soil resistivity and coating impedance is shown in Figure 4b and c, 

respectively. It was assumed that the coating impedance was varied discretely between 3.81e13, 

1.91e13, 1.91e12, and 7.62e11 Ω-cm2 at the measurement points along the pipeline. 

 



4  

 
 

Figure 3: Effect of soil resistivity on a) finite and b) infinite pipeline with single potential 

application point, and c) finite and d) infinite pipeline with multiple potential application points.  

 

 

 
Figure 4: a) Effect of heterogeneous soil resistance and coating impedance on pipeline with multiple 

potential application points, b) Soil resistivity distribution, and c) coating impedance distribution.  

 

From 0 to 20 km, it was assumed that the coating impedance could be either of the two highest 

impedance values at each measurement point, and from 20 to 70 km, it was assumed it could be 

either of the two lowest impedance values. For the last segment of the pipeline, it was assumed 
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that the coating impedance could vary between the two highest and lowest impedance values at 

each measurement point. This was done to see the effect of large local changes (roughly one 

order of magnitude) on the potential distribution of the pipeline. In the first region from 0 to 20 

km the average coating impedance was the highest for the modeled pipeline and coupling, and 

with a relatively low soil resistivity, there was little to no potential drop occurring in this region. 

From 20 to 70 km, there is a region of higher soil resistivity coupled with relatively low coating 

impedance displaying high rates of potential change over the region. For both of the potential 

application points, there is //a sharp increase in the modeled potential. In both regions where 

there was a higher average coating impedance, the overall potential change was less steep.  

 

 

Task 2: Integrating field inspection, theoretical, with experimental data by applying 

pattern recognition techniques relating the pipeline-coating-soil system with CP. 

 

For initial validation of the TLM potential distribution, it was compared with the ON potential 

measurements for field CIPS measurements on a 56 km buried pipeline with two rectifier 

locations. For the best fit between the model and field data, there were four different ways of 

estimating the coating impedance over the length of the pipeline:  

 

1. Constant coating impedance value for the entire pipeline 

2. Discrete distribution of coating impedance at each measurement location  

3. Normal distribution of coating impedance with a single mean value for the entire 

pipeline  

4. Normal distribution of coating impedance with multiple mean values for the 

entire pipeline  

 

For simulating the field data, the soil resistivity used in the model was the measured soil 

resistivity values collected along the length of the pipeline.  Figure 5a shows the measured soil 

resistivity data in Ω-km, and Figures b and c compare the model output (red line) with field data 

(black dots) using the first two methods of assuming the coating impedance distribution. Using a 

homogenous value of the coating impedance was able to generally follow the trend of the 

potential distribution but was underestimating the potential values compared to the field data. In 

Figure 5c the two discrete values used for the coating impedance were𝑅𝐶1 = 2.76 Ω 𝑘𝑚2  𝑅𝐶2 =
0.276 Ω 𝑘𝑚2, At each measurement point in the model the impedance value was randomly 

chosen to be either one of these two values. This allowed a better fitting compared to the 

homogenous case, but had still had some large deviations between the model output and field 

data.   

 



6  

 
Figure 5: a) Soil Resistivity distribution, Comparison of TLM potential distribution with field CIPS data 

for b) homogenous coating impedance (𝑹𝑪 = 𝟐.𝟕𝟔 𝛀 𝒌𝒎𝟐), and c) heterogenous coating with discrete 

coating impedance distribution (𝑹𝑪𝟏 = 𝟐.𝟕𝟔 𝛀 𝒌𝒎𝟐  𝑹𝑪𝟐 = 𝟎. 𝟐𝟕𝟔 𝛀 𝒌𝒎𝟐) 

 

 

 
Figure 6a and c compare the model output with field data for various coating impedance 

assumption cases 3 and 4, respectively. The assumed coating impedance distribution for both cases 

is shown in Figuresb and d. The assumed coating impedance model input parameters are shown in  

 

Table 1. From Figure 6a it can be seen that using a normally distributed impedance parameter 

was able to provide a relatively good fit between model and field data around the 5 to 25 km 

section of the pipeline. In the other regions, the assumed coating impedance was not able to 

accurately describe the assumed potential distribution. In Figure 6c, the model output was 

relatively close to the measured values, providing a good estimation of the coating impedance 

along the length of the pipeline.  
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Figure 6: a,c) Comparison of model potential distribution with field CIPS using a single impedance mean 

value and a distribution of mean impedance values, and b,d) coating impedance distribution along the 

length of the pipeline  

 

 

Table 1: Model parameters for calculating potential distribution  

 
xi (km) xf (km) µRc (Ω-km2) σRc (Ω-km2) 

Baseline --- --- 2.225 0.01 

Segment 1 0 5.77 1.047 0.01 

Segment 2 40 45 0.2762 0.01 

Segment 3 46 49 0.0381 0.01 
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Task 3: Validation of the a priori framework with experimental and field conditions for 

characterization/modeling and Evaluation/Validation 

 

Physics-Based Bayesian Optimization for Severity Estimation Using CIPS Readings in 

Underground Pipelines 

 

Ensuring the structural integrity of underground pipelines is critical for preventing failures and 

optimizing maintenance strategies. Close Interval Potential Survey (CIPS) is widely used to 

assess the effectiveness of cathodic protection systems and detect potential corrosion-related 

defects. However, conventional methods for interpreting CIPS data often rely on empirical 

thresholds or deterministic models, which may not adequately capture uncertainties in defect 

severity estimation. Hence based on the Transmission Line Model (TLM) model developed by 

Texas A&M university we propose a Physics-Based Bayesian Optimization (PBBO) model that 

integrates the Transmission Line Model (TLM) to simulate potential distribution along 

underground pipelines, capturing the electrochemical and physical effects influencing CIPS 

readings. By incorporating Bayesian optimization, the model systematically refines severity 

estimation by learning from prior corrosion data, accounting for uncertainties, and improving 

defect localization. 

 

In the proposed model, known inputs include soil resistivity along the pipeline (𝑹𝒔), coating 

resistance (𝑹𝒄), CIPS voltage readings along the pipeline (𝑽𝒎), locations of cathodic protection 

(CP) rectifiers(𝑿𝒎), and possible defect (holiday) locations (𝑿𝒉)  identified from CIPS readings. 

The primary objective is to estimate the holiday resistance (𝑹𝒉) and capacitance (𝑪𝒉) at the 

defect locations, as these parameters directly indicate the severity of pipeline degradation. 

The random variables in this model are:  𝑹𝒉, 𝑪𝒉 and rectifier voltages 𝑽𝒓 = [𝑉1, 𝑉2, 𝑉3… . 𝑉𝑙] for 

𝑙 rectifiers. Given that there are 𝑘 holidays and 𝑙 rectifiers, the model includes a total of 2𝑘 + 𝑙 +
1 random variables. We define prior distributions for 𝑹𝒉 and 𝑪𝒉 as normal distributions based on 

the properties of bare (𝑅𝑠 , 𝐶𝑠)  

 

𝑹𝒉~𝑁(𝑅𝑠, Σ𝑠) ,      𝑪𝒉~𝑁(𝐶𝑠, Σ𝑠). 
 

 

The rectifier voltages 𝑽𝒓are also assumed to be normally distributed, with values expected to fall 

within the NACE-recommended protection range of −0.85V to −1.2V, beyond which the 

pipeline is considered overprotected. Thus, the model parameters are represented as: 

 

𝚯 = [𝑹𝒉, 𝑪𝒉, 𝑽𝒓]. 
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Figure 7 shows the probabilistic graph model (PGM) for the proposed Bayesian model. A PGM 

is a visual and mathematical representation of the probabilistic relationships between random 

variables using nodes and edges. It helps capture dependencies, encode joint distributions 

efficiently, and is widely used in Bayesian inference, machine learning, and uncertainty 

quantification.  Given sampled values of the parameter vector 𝚯, the predicted CP potential (𝑉𝑝) 

is computed using the TLM  forward model. In practice, the predicted values (𝑽𝒑) rarely match 

the measured CIPS values (𝑽𝒎) perfectly due to model inaccuracies, environmental 

uncertainties, and data noise. This discrepancy is represented by an error term𝜺, which is 

assumed to be independently and identically distributed as:  

 

𝜺 = 𝑁(0, 𝝈𝜺
𝟐). 

 

According to Bayesian literature [1][2] a noninformative prior (weakly informative prior) like an 

inverse gamma distribution ( 𝚪−𝟏(𝜶𝝈𝜺 , 𝜷𝝈𝜺)) can be assumed as prior for the variance (𝝈𝜺
𝟐) of the 

model.  Thus, the components of the Bayesian model are defined as, 

 

𝑃𝑟𝑖𝑜𝑟((𝒑 = (𝚯, 𝝈𝜺)) =∏𝑁(𝚯𝒊, 𝝁𝚯𝒊 , 𝚺𝚯𝒊)

𝑁

𝑖

× 𝚪−𝟏(𝝈𝜺; 𝜶𝝈𝜺 , 𝜷𝝈𝜺) 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝜺|𝒑) =∏𝑁(𝜺; 𝟎, 𝝈𝜺
𝟐)

𝑁

𝑖

 

Given the prior and likelihood, the posterior according to Bayes theorem is, 

 

𝑝𝑜𝑠𝑡(𝒑|𝜺) ∝ 𝚪−𝟏(𝝈𝜺; 𝜶𝝈𝜺 , 𝜷𝝈𝜺) ×∏𝑁(𝚯;𝝁𝚯, 𝚺𝚯)𝑁(𝜺; 𝟎, 𝝈𝜺
𝟐)

𝑁

𝑖

 

where 𝑁 is the number of observed data. 

 

 

Bayesian updating is performed using the No-U-Turn Sampler (NUTS) [3], a variant of 

Hamiltonian Monte Carlo, which efficiently explores the high-dimensional parameter space and 

samples from the joint posterior distribution. The resulting samples form a trace of the Markov 

chain, providing a numerical approximation to the posterior and enabling uncertainty-aware 

predictions. This probabilistic framework allows for more accurate and interpretable severity 

estimation, ultimately supporting better decision-making for pipeline integrity management and 

maintenance planning. 
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Figure 7: Probabilistic graph model 
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1. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian 

Data Analysis(3rd ed.), Chapman and Hall/CRC, 2013. 

2. C. M. Bishop, Pattern Recognition and Machine Learning, Cambridge: Springer, 2006. 

3. M. D. Hoffman and A. Gelman, "The No-U-Turn sampler: adaptively setting path lengths 

in Hamiltonian Monte Carlo," Journal of Machine Learning Research, vol. 15, no. 1, pp. 
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Project Financial Activities Incurred during the Reporting Period: 

• Two PhD students have been involved in the project since January 2025. One full-time 

employee will perform task 1 and analyze and process data for task 2. One part-time PhD 

and Master's student will help perform the testing methods to extend the TLM with the 

AI integration for task No. 3. We added a new undergraduate student for testing and data 

analysis activities for task 1. 

• The UDayton team includes Sreelakshmi Sreeharan as a Postdoc researcher and one PhD 

student in this project, and continues efforts in Tasks 2 and 3. 

• We will attend the AMPP 2025 conference to be held in Nashville, Tennessee. April 2025, 

and we are preparing two peer review papers for the Journal of Science and Engineering 

of Pipelines by Elsevier. We are filling a copyright for the TLM for CP and holiday 

detection. 

• The laboratory has been used for several setups and measurements. The simulation of 

buried conditions has been performed during this and the next quarter. We will use different 
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high-resolution characterization tools during the laboratory work, such as local 

electrochemical impedance spectroscopy. 

Financial Summary 

• Federal Cost Activities (cumulative): 

o PI/Co-PIs/students' involvement and tuition (including total): 

Total: $92,009.68 USD 

o Materials purchased/travel/contractual (consultants/subcontractors):  

Total is: USD 71,728.83 

 

Total Direct costs: USD 163,738.51 

Total Indirect costs: $38,444.56 USD 

Total: $202,183.07  USD 

• Cost Share Activities: 

o Cost share contribution: 

• Heuristech has contributed $23,400 in technology training and/or company personnel 

hours for physical laboratory testing and mathematical tools.  

• Integrity Solutions has made the database available with a very high value; the 

contribution is beyond USD 86,000 in CP field data (CIPS, DCVG, Resistivity, 

historical data, and different rights of ways) base collection. Also, IS has contributed as 

a co-share in technical staff resources to collect, collate, evaluate, screen, database 

development, attending workshops and training, analyzing Cathodic Protection (CP) data, 

contributing to computer algorithm development programming, and other program 

software/model components. 

• The University of Dayton has contributed $45,939.60 in cost share, $30,524.46 in faculty 

payroll and $15,415.104 in indirect costs.  

 

Project Activities with Cost Share Partners: 

 

During the sixth quarter of this project, we met several times (around five) with the co-sharing 

partners; the following outcomes from the meeting were: 

 

• Meetings for updates on the experimental testing for reflectometry methodology.  

• Integral Solutions facilitates the collection of databases needed in this project. We have a 

meeting to clarify the data set and the formatting.  

• We will organize a technical workshop with the team partners to get feedback on our 

proposal concept. We will include some students to train them in the pipeline subject. 
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Project Activities with External Partners: 

• We will organize a technical workshop with the team partners to get feedback on our 

proposal concept.  

• We will organize different courses for pipeline companies, one of the topics will be 

integrity and risk. 

 

Potential Project Risks: 

We received the US pipeline database and already had the international one. The pipelines to be 

used for the analysis and this project have been selected. Currently, there are no potential risks.  

 

Future Project Work: 

 

We anticipate following the proposed timeline with no current changes during the next months. 

We will follow the Gantt chart to mark the progress and plans. 

During the next 30, 60, and 90 days, we will perform task 1 activities. We will extend more 

activities in Task 1. Also, we will continue with Task 2's activities and start with Task 3 for the 

next 30, 60, and 90 days. 

Theoretical work, laboratory work, and current database analysis will be considered for the next 

quarter. 

 

• Include ways of estimating coating defects activity and severity in the coating 

impedance model 

• Continue validating the model with multiple sets of field data  

 

The timeline and schedule for the project are in the Gantt chart.    

Task/Subtask 

                      Fiscal Year     

2023 2024 2025 2025 2026 2026 2026 

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 

Task 1: Designing and building the 

physical prototypes in laboratory 

conditions and deterministic 

modeling         

    

Task 2: Integrating field inspection, 

theoretical, with experimental data by 

applying pattern recognition 

techniques relating the pipeline-

coating-soil system with CP         

    

Task 3: Validation of the a priori 

framework with experimental and 

field conditions for 

characterization/modeling and 

Evaluation/Validation         

    

Task 4: Development and validation 

of the methodology for ECDA based 

on CP levels         

    

Deliverable Milestones are indicated in black*, and in dark green is the extended activities. 
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Potential Impacts to Pipeline Safety: 

 

During the Transmission Line Modeling, we integrate the algorithms used for Artificial 

Intelligence. The TLM will add the fundamental approach, as well as the field and laboratory 

validation. The TLM was developed for multiscale conditions, the macro scale is validated with 

the field data (from Task 2). The micro conditions have been validated with laboratory-scale 

experiments (from Tasks 1 and 2) 

The potential impact is the results generated for the AI algorithm, the TLM is based on a 

deterministic and fundamental approach. This can not only show different trends for a buried 

structure under cathodic protection but also include several features in the RoW, resistivity, 

rectifier location, coating anomalies, and soil characteristics. The rectifiers, anodic beds, soil 

compositions, current distribution, etc. 

 

We are building an integrated algorithm not only based on the data field but fundamentals. 
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Appendix 
 

The experimental test matrix is shown in Table . Base metal and coating were chosen specifically 

to try and simulate the most commonly used materials in the field. Currently, all lab testing is 

being performed with 1018 CS base metal and fusion bonded epoxy (FBE) coating that is 

applied in-house. With plans to include the other base metals and commercially applied coatings. 

The testing solution for all testing was selected to be NS4 solution with various pH values. This 

solution simulates the near-soil environment seen in the field and consists of 4 chemicals: 

sodium bicarbonate (NaHCO3), potassium chloride (KCl), Calcium Chloride (CaCl2), and 

magnesium sulfate heptahydrate (MgSO4-7H2O). Exact composition and methods for altering pH 

are detailed below. The cathodic protection (CP) and coating state were varied to simulate the 

various conditions that in-use pipelines can be found. Understanding how the CP level and 

coating state affect the impedance response of the system can provide more insight into detecting 

problems with pipelines earlier and with more accuracy.  

 
Table 1: Experimental Test Matrix 

Base Metal Testing Solution CP State (mV vs SCE) Coating Coating State Coating Thickness (mil) 

1010/1018  NS4 – As-recived  OCP (no protection) Coal Tar Intact 15 

X52 NS4 – Neutral pH -637 (under protection) FBE Holiday – small 20 

X68 NS4 – Acidic pH -777 (standard protection) Yellow Jacket Holiday – large 25 

  -1227 (over protection) Tri-layer Delamination 35 

   4500  25-40 

Test Procedure 

• Laboratory Testing  

1018 carbon steel plates were coated with a commercial-grade FBE. The thickness of the 

coating was varied from 10 mil to 50 mil. Coating thickness was controlled with a micrometer-

adjustable film applicator. Two initial studies were performed with the FBE coatings: 1) effect of 

coating thickness on impedance response of the system with and without holidays at OCP, and 2) 

Effect of CP state for a coating with a thickness of 25 mil under the three-coating states (intact, 

holiday, and delamination).  For the initial holiday creation, the holiday was of square geometry 

and was cut by hand into the coating after the coating was fully cured. The dimensions of the 

holiday were 0.5 cm x 0.5 cm (0.20” x 0.20”), giving a surface area of 0.25 cm2 (0.039 in2). 

Going forward, all holidays were created with a circular geometry and were cut with an end mill 

to ensure that the created holidays are consistent. The diameters of the small and large holidays 

are 0.516 cm (0.203”) and 0.794 cm (0.313”), respectively.  

The NS4 solution was used as the testing solution to simulate the corrosion of buried 

pipelines. NS4 is a soil-mimicking solution that consists of potassium chloride (0.122 g/L), 

sodium bicarbonate (0.483 g/L), calcium chloride (0.137 g/L), and magnesium sulfate 

heptahydrate (0.131 g/L). To adjust the pH of the solution, various concentrations of CO2/N2 

were purged through the solution, where increasing the amount of bicarbonate in the solution 

lowers the pH of the solution [9]. 

All electrochemical testing was performed at ambient conditions with a three-electrode 

system.  A saturated calomel electrode (SCE) was used as the reference electrode, platinum mesh 

as the counter electrode, and the tested material as the working electrode. EIS measurements 

were performed by applying a sinusoidal perturbation while varying frequencies from 100 kHz 

to 10 mHz. For the intact coating samples, the potential perturbation was set to 15 mVrms, and for 



15  

samples with defective coatings, it was set to 10 mVrms. A large potential signal was applied to 

the intact coating samples to increase the current response of the system, lowering the amount of 

noise in the measurements. To simulate the various levels of CP, the DC bias potential for the 

EIS signal was set to the specified potentials.  

 

 
Figure 1: EIS testing schematic 

 After performing OCP, LPR, and EIS, the samples underwent decay testing. Starting with 

the OCP measurement, the initial potential was selected in the anodic direction of the process at 

+0.1V from the OCP. The schematic test system was set up as shown in Figure 1 and 2. The power 

supply was connected to apply the selected potential condition. The system was held for 30 seconds 

to ensure stability, after which the power supply was turned off, and the potential was measured 

using a voltmeter for 600 seconds to confirm that stability remained. 

 
Figure 2: Schematic illustration for the anodic decay setup of the tests 

Results and Discussions 

Task 1: Designing and building the physical prototypes in laboratory conditions and 

deterministic modeling 

• Task 1.1: Electrochemical Impedance Spectroscopy Study: Lab Data 

 

There is a continued effort to generate data in the lab following the experimental test matrix 

shown in  Table . Figure  shows the effect of coating thickness on the impedance response of a 

coated substrate with two different holiday radii. For all coating thicknesses, there is little 

deviation in the impedance response between the three coatings for each holiday size. But it can 
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be seen that with the smaller holiday, the overall impedance response is larger compared to the 

samples with the larger holiday for all coating thicknesses.  

 

 
Figure 3 Effect of coating thickness on the impedance response of a coated substrate with a) 0.516 cm 

and b) 0.794 cm holiday  

Figure  shows the effect of polarization condition on the impedance response of FBE 

coatings with and without holidays present in the coating. At all potential values intact coating 

shows consistently high impedance (10¹⁰-10¹² Ω-cm²) at low frequencies, with a linear decrease 

as frequency increases. This indicates excellent barrier properties and capacitive behavior 

characteristic of an undamaged coating. This is a characteristic response of the highly capacitive 

coating. The large and small holiday defects display much lower impedance values, by the large 

drop in overall impedance values and more positive phase angle values. Small holidays 

consistently show higher impedance values than large holidays across all protection potentials, 

suggesting better residual protection capabilities. As for the protection potential effect, OCP 

shows baseline behavior, whereas standard protection provides optimal results for defect 

mitigation. Both defect sizes show distinctive phase angle peaks in the mid frequency range (10⁰-

10² Hz) when tested at OCP. For under protection, small holiday shows deeper phase angle 

minima (-40°) and large holiday exhibits shallower phase angle response (-20°). Under standard 

protection, phase angle minima become more pronounced for both defect sizes. Small holidays 

show more negative phase angles than large holidays. For overprotection, phase angles become 

less negative and there is a convergence of phase response between large and small holidays. 

This reduction in phase angle variation shows more resistive behavior 
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Figure 4: Bode and phase angle plots for FBE coatings with and without holidays for various CP 

conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard protection, and (g-h) over 

protection 
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Figure  shows the effect of polarization condition on the impedance response of coal tar 

coatings with and without holidays present in the coating. The intact coating showed consistently 

high impedance (10¹⁰-10¹² Ω-cm²) at low frequencies similar to FBE. These high values were 

shown for each polarization condition as well.  The phase angle behavior for intact coating 

exhibits near-capacitive behavior approaching 90° and shows minimal frequency dependence in 

mid to high frequency ranges. Defect responses in coal tar show clearer separation between the 

intact and damaged coating conditions. Applying the under protection potential for the coal tar 

coating defects did not produce a drastic change from the OCP conditions. But, applying 

standard protection did increase the overall impedance relative to the under protection potential 

and OCP conditions.  For the over protection potential the overall impedance did drop but is 

most likely due to the higher rate of cathodic reaction occurring with the larger more negative 

potential that was applied to the surface.  

 

The overall impedance response was very similar for the two coatings when various 

cathodic protection potentials were applied. The intact coatings showed large impedance values 

and phase angle values near -90° for most of the frequency domain regardless of the potential 

application. There was little difference between the impedance response between OCP and under 

protection potential for FBE and coal tar coatings. This is most likely due to OCP and under 

protection potential being similar in magnitude. Impedance measurements under the standard 

protection potential did show an increase in the impedance magnitude and more negative phase 

angle values for both small and large holidays. This is indicative that the exposed surface was 

more protected with the application of the standard protection potential. For both FBE and coal 

tar coatings when the overprotection potential was applied the impedance magnitude decreased 

and phase angle values became more positive. This is most likely due to the increased cathodic 

reaction rate with a more negative potential relative to the other three conditions.  
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Figure 5: Bode and phase angle plots for Coal Tar coatings with and without holidays for various CP 

conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard protection, and (g-h) over 

protection 
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Figure 6 presents the Bode and phase angle plots for 4500 coating with a thickness of 25 mils 

under various CP conditions. The intact coating maintains high impedance values at low 

frequencies, like other coatings, indicating strong barrier properties. Defect responses show a 

notable decrease in impedance compared to intact coatings, with small holidays generally 

exhibiting higher impedance than large ones. Under standard protection, impedance increases, 

and phase angles become more negative, suggesting enhanced protection of the exposed surface. 

Overprotection leads to decreased impedance and less negative phase angles, indicating 

increased cathodic activity. The plots suggest that standard protection is most effective for 

mitigating defects in these coatings. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bode and phase angle plots for 4500 coating (25 mils thickness) coatings with and without 

holidays for various CP conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard 

protection, and (g-h) over protection 

a) b) 

h) 

e) 

d) c) 

f) 

g) 
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Figure 7 shows similar trends for a 4500 coating with a thickness of 40 mils. The thicker coating 

maintains high impedance at low frequencies, consistent with other coatings. Defect responses 

are more pronounced, with small holidays showing higher impedance than large ones across all 

protection conditions. Standard protection enhances impedance and phase angle responses, 

indicating better defect mitigation. Overprotection results in decreased impedance and less 

negative phase angles, likely due to increased cathodic reactions. The thicker coating may offer 

slightly better barrier properties, but the overall trends are consistent with thinner coatings. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Bode and phase angle plots for 4500 coating (40 mils thickness) coatings with and without 

holidays for various CP conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard 

protection, and (g-h) over protection 

a) b) 

c) d) 

e) f) 

g) h) 
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All three coatings exhibit high impedance values at low frequencies when intact, indicating strong barrier 

properties. Standard protection generally enhances impedance and phase angle responses, suggesting 

better defect mitigation. Overprotection leads to decreased impedance and less negative phase angles due 

to increased cathodic reactions. The coal tar coatings show clearer separation between intact and damaged 

conditions compared to FBE coatings. The 4500 coating, regardless of thickness, follows similar trends to 

the other coatings but may offer slightly better barrier properties due to its thickness. Overall, standard 

protection is most effective for mitigating defects in these coatings. 

 

 

• Task 1.2: Fitting 2D TLM to the Lab data – EEC Fitting 

This is an initial set of data that was performed with the square holiday geometry as a proof 

of concept. Figure  shows the Nyquist, Bode, and phase angle plots of FBE-coated carbon steel 

after 1 week of immersion and the fitted 2D TLM. The coated samples displayed phase angle 

values near -90°, which shows that the coating behaves like a perfect capacitor and still protects 

the base material. The EEC values determined from CNLLS fitting are shown in Table . The 

fitted values of the EEC were able to fit the experimental data relatively well, showing the 

viability of the model for use with high impedance systems. In the low frequency regime, it can 

be seen that the phase angle starts to bend towards more positive values. This shift in phase angle 

values is most likely due to water uptake into the coating. This displays the ability of the model 

to still perform well when the impedance of the electrodes tends towards non-ideal behavior. 

 

 
Figure 8: a) Nyquist and b) Bode and phase angle plots of coated carbon steel in NS4 solution after 1 

week immersion  

Table 2: CNLLS Fitted values of EEC values used in 2D TLM for coated carbon steel in NS4 solution 

Sample 
R 

(Ω-cm2) 
Q 

(F-cm2-s-n) 
n RMS Error 

Run 1 1.69 ∗ 1012 ± 1.37 ∗ 1011 2.17 ∗ 10−11 ± 2.74 ∗ 10−13 0.968 ± 0.0015 0.0716 

Run 2 2.29 ∗ 1012 ± 2.92 ∗ 1011 2.14 ∗ 10−11 ± 2.55 ∗ 10−13 0.970 ± 0.0014 0.0682 

Run 3 2.44 ∗ 1012 ± 2.95 ∗ 1011 2.17 ∗ 10−11 ± 2.17 ∗ 10−13 0.969 ± 0.0012 0.0575 

Run 4 2.19 ∗ 1012 ± 3.84 ∗ 1011 2.68 ∗ 10−11 ± 3.41 ∗ 10−13 0.956 ± 0.0015 0.0735 
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The EIS measurements of coated samples with a holiday introduced after one week of immersion 

is shown in Figure . It can be seen that there is a drastic decrease in the overall impedance of the 

system compared to the impedance of the intact coating shown in Figure . In the model, ℝ1 was 

defined as the intact coating, an average value of the fitted EEC values from case 2 was used as 

the EEC values in ℝ1. For the ℝ2 the values were changed to provide the best fit possible. 

Initially, the CNLLS function is not able to provide fitting for the heterogeneous case, so fitting 

was performed manually; fitted EEC values are shown in Table . The model was able to provide 

the best fit in the medium to low frequency ranges (< 101 Hz) and still had trouble with fitting in 

the high frequency regime, most likely due to the system not considering systemic/random errors 

that can occur during measurements.   

 
Figure 9: a) Nyquist and b) Bode and phase angle plots of coated carbon steel with coating holiday in 

NS4 solution after 1 week immersion 

Table 3: Fitted values of EEC values used in 2D TLM for coated carbon steel with coating holiday in 

NS4 solution 

Sample Region 
R 

(Ω-cm2) 
Q 

(F-cm2-s-n) 
n RMS Error 

Coating ℝ1 6.86 ∗ 1011 7.19 ∗ 10−11 0.966 ----- 

Run 1 ℝ2 1.73 ∗ 104 1.10 ∗ 10−3 0.750 0.1012 

Run 2 ℝ2 1.49 ∗ 104 1.18 ∗ 10−3 0.733 0.1104 

Run 3 ℝ2 1.41 ∗ 104 1.18 ∗ 10−3 0.733 0.1367 

 

Traditionally a lumped EEC would be used for fitting the EIS data even when there are known 

heterogeneities in the system. Using the same EEC structure as was used in the 2D TLM, a 

lumped EEC was fit to the experimental data for comparison. The EEC values obtained by 

traditional lumped EEC circuit fitting is shown in Table .  

 
Table 4: Lumped EEC fitting values 

Sample 
R 

(Ω-cm2) 
Q 

(F-cm2-s-n) 
n 

Run 1 3.84 ∗ 104 3.58 ∗ 10−4 0.700 
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Run 2 4.56 ∗ 104 3.70 ∗ 10−4 0.691 

Run 3 4.33 ∗ 104 4.28 ∗ 10−4 0.654 

 

 

Both the resistance and Q values of the lumped EEC values are somewhere between the values 

used for the two regions shown in Table . This is most likely due to the lumped EEC taking an 

average of all the processes occurring with accounting for both the holiday and intact coating 

separately. The fitted resistance value is around two times higher in the lumped EEC compared 

to 2D TLM. This could lead to an underestimation of the extent of corrosion that is occurring at 

the holiday when calculating the local corrosion rate of the metal.  

 The |Z| and phase angle distributions at 10 Hz for the coating with the square holiday is 

shown in Figure . The black lines indicate the model geometry. Outside the square is assumed to 

be the intact coating (ℝ1) and inside the square is assumed to be the holiday (ℝ2). Both the |Z| 

and phase angle distributions display steady changes from the boundary of the model to just 

outside of ℝ2, and then stays relatively constant inside of ℝ2, and remained relatively constant 

inside of ℝ2.   

 

 

 
Figure 10: a) |Z| and b) phase angle distribution from 2D TLM at 10 Hz for coating with a holiday. 

Where the 2D TLM EEC values for the two regions are:  ℝ𝟏 EEC values: 𝑹 = 𝟐. 𝟏𝟖 ∗ 𝟏𝟎𝟏𝟏𝜴, 𝑸 =
𝟐. 𝟐𝟔 ∗ 𝟏𝟎−𝟏𝟎𝑭 − 𝒔−𝒏, 𝒏 = 𝟎. 𝟗𝟔𝟔 and ℝ𝟐 EEC values: 𝑹 = 𝟏. 𝟓𝟕 ∗ 𝟏𝟎𝟑𝜴, 𝑸 = 𝟏. 𝟏𝟕 ∗ 𝟏𝟎−𝟒𝑭 −

𝒔−𝒏, 𝒏 = 𝟎. 𝟕𝟑𝟗 

• Task 1.3: Fitting 2D TLM to the Lab data – Mechanistic Model  

Figure , Figure  displays the 2D TLM ability for using mechanistic definitions to fit data 

from an intact coating with various thickness and a 15 mil coating with a defect in the center of 

the exposed area. From Figure  it can be seen that the impedance response of the 2D TLM using 

mechanistic definitions for the coating capacitance was very similar to that of the experimental 

data.  The difference between the model and experimental data is due to the model assuming a 

homogenous value of the coating thickness and ohmic resistance of the coating. Unlike the actual 

case there is a distribution of these across the interface which creates a deflection of the data 

from its ideal behavior. Overall the model was able to produce a similar impedance response that 
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was seen in the intact coating case. The biggest defect occurred in the thicker coating. This is 

most likely due to the thicker coating that was applied to the substrate; with a thicker coating, 

there is a more likely chance that the coating has some sort of defect that can influence the 

impedance response of the system. Also, with this first case of fitting the ohmic resistance of the 

coating was not changed from sample to sample in the 2D model, but most likely there is some 

deviation of ohmic resistance between the actual coated samples that needs to be taken into 

account for a better fit. As of right now, there is no model that is applied for determining the 

ohmic resistance of the coating; the value is just an assumed value in the 2D model.  

 

 

 
Figure 11: Nyquist and phase angle plots comparing experimental and model results for a) 15 mil, b) 25 

mil, and c) 45 mil coatings.  

 

 

Figure  shows the comparison of the 2D model with experimental results for a 15 mil FBE 

coating that had a holiday introduced into the coating exposing the substrate. Two initial 

measurements were performed on two separate locations and this data was used to check the 

validity of the model’s output. From Figure  it can be seen that the 2D model was able to give a 

pretty good estimation of the general form of the impedance response of the system. The 

deviation between the model and experimental data is most likely due to the model assuming a 

idealized impedance response and assuming one time constant for the entire surface. In actuality 

there is a distribution of time constants in the experimental results that creates the deflection 

from idealized impedance response. To create a better fit of the model to experimental data it 

must be assumed in the model that there is some distribution of time constants.  
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Figure 12: Nyquist, Bode, and Phase angle plots of two different 15 mil FBE coatings with a defect with 

an area of 0.275 cm2 
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