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Task 1. Designing and building the physical prototypes in laboratory conditions and deterministic 

modeling. 

Mechanistic Numerical Analysis 

Rather than using generic EEC values to represent the mechanisms that are occurring at the 

interface, it is possible to define the impedance response of specific mechanisms. These 

impedance definitions can then be used in the 2D TLM for modeling various processes. Initially, 

mechanistic analysis was performed for two cases: 1) an electrode that is coated with a coating 

that is capacitive, and 2) a simple one-step electrochemical reaction with no effects of external 

polarization or concentration gradients. Figure 1 depicts a general electrochemical interface for a 

coated samples immersed in an aqueous environment with various ions present, along with the 

EEC definitions of a coating that displays only capacitive and resistance + capacitive impedance 

response.   

 

 
Figure 1: a) General electrochemical interface of a coated sample, b) EEC definition using only solution 

resistance and purely capacitive coating, and c) EEC definition using a solution resistance coupled to an 

imperfect coating that displays resistive and capacitive properties 
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For both cases in Error! Reference source not found.b and c the coating capacitive response 

was defined using the following equation:  

𝐶 =
𝜖0𝜖𝑟𝐴

𝑑
 (1) 

Where 𝜖0 is the permittivity of free space, 𝜖𝑟 is the permittivity of the coating, 𝐴 is the surface 

area, and 𝑑 is the coatings thickness. 𝜖0 is a universal permittivity constant and does not change 

from system to system, and 𝜖𝑟 was determined experimentally from multiple electrochemical 

measurements. The value of 𝜖𝑟 was determined to be around 13.36 for a FBE coating. For each 

coating system the 𝜖𝑟 must either be found in literature or determined experimentally. The 

surface area was simply set as the total area that was exposed to the solution. The coating 

thickness was changed to various values to understand the effect of coating thickness on the 

impedance response of the system. Comparison of the impedance response of the EECs in Figure 

1b and c are shown in Error! Reference source not found..  

 

 

 
Figure 2: a) Nyquist, b) Bode, and c) Phase angle plots comparing a coating with a thickness of 1000 µm 

that display capacitive (black) and resistive + capacitive (red) response. Model Parameters: 𝑹𝒔 =

 𝟏. 𝟒 𝒌𝜴, 𝑹𝒑𝒐 = 𝟑𝟔𝟎 ∗ 𝟏𝟎𝟗𝜴, 𝝐𝒓 = 𝟏𝟑. 𝟑𝟔, 𝝐𝟎 = 𝟖. 𝟖𝟓 ∗ 𝟏𝟎−𝟏𝟑 𝑭

𝒎
 , 𝑨 = 𝟑. 𝟏𝟒𝟏𝟔 ∗ 𝟏𝟎−𝟒 𝒎𝟐, 𝒅 = 𝟏𝟎𝟎 ∗ 𝟏𝟎−𝟔 𝒎 

 

It can be seen from Figure 2Error! Reference source not found. that for both EEC cases 

the overall impedance magnitude was the same over the entire frequency range. But in the two 

circuits deviate in the low frequency regime where the capacitive only EEC stayed around 90° 

over the frequency range of 10-2 – 103 Hz. The resistive + capacitive EEC the deviation towards 

more positive phase angle values is due to the addition of the resistive component. In the low 

frequency regime <10-1 Hz the preferred conduction path is through the resistive component of 

the circuit. The role of coating thickness on the impedance response of the system is shown in 

Figure 3. With increasing thickness, the overall impedance magnitude increases along with a 

change in the frequency response of the system.  
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Figure 3: a) Bode and b) Phase angle plots showing the effect of coating thickness on the impedance 

response of the model  

For case 2, Figure 4a and b depict a general electrochemical interface for a bare metal 

surface immersed in an aqueous environment with various ions present, along with the EEC 

definitions of the solution resistance and the general interfacial impedance. Figure 4c depicts the 

general interface impedance in terms of the faradaic and charging currents. Where the faradaic 

and charging currents are the portions of the current that are used in the charge transfer reaction 

and charging of the double layer respectively.  

 

 
Figure 4: a) General electrochemical interface of a bare metal surface, b) EEC definition using only 

solution resistance and general interface impedance definition, and c) general impedance definition in 

terms of a charging and faradaic current  

Equations 1 - 4 define the double layer capacitance and charge transfer resistance in terms of the 

electrochemical properties of the system.  

𝐶𝑑𝑙 = (
1

𝐶𝐻
+

1

𝐶𝑑𝑖𝑓𝑓
) (2) 
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𝐶𝐻 =
𝜖𝐴

𝑑
 (3) 

𝐶𝑑𝑖𝑓𝑓 = (
𝑛0𝜖𝑒0

2

2𝜋𝑘𝐵𝑇
) cosh (

𝑒0𝑉

2𝑘𝐵𝑇
) (4) 

𝑅𝑐𝑡 =
𝑉

𝑖̃

̃
=

1

𝑖 (
𝑛𝐹

2𝑅𝑇
)

=
1

𝑖0 ∙ 𝑒
𝑛𝐹

2𝑅𝑇
𝜂 (

𝑛𝐹
2𝑅𝑇

)
 (5)  

 

For the double layer capacitance there were a few assumptions made for the initial derivation: no effect of 

ion adsorption, well mixed and homogenous solution, and only one ion predominantly playing a role in 

the corrosion process.  𝐶𝐻 is defined as the Helmholtz capacitance, which is assumed to follow the same 

form as a flat plate capacitor where 𝜖 permittivity of water, 𝐴 is the surface area, and 𝑑 is the thickness of 

the layer which was assumed to be the radius of the solvated ions. 𝐶𝑑𝑖𝑓𝑓 is the capacitance of the diffuse 

layer, where 𝜖 permittivity of water, 𝑛0 is the number of ions in the bulk solution, 𝑒0 is the charge of the 

ion, 𝑉 is the potential drop across the diffuse layer,  𝑘𝐵 is the Boltzmann constant, and 𝑇 is the 

temperature of the system. The total double layer capacitance is the combination of the Helmholtz 

capacitance and diffuse layer capacitance in series. There were two main assumptions made for the 

derivation for the charge transfer resistance: 1) only one reaction at the interface (𝐹𝑒 → 𝐹𝑒2+ + 2𝑒−) and 

2) the steady state current has the form of the following equation:  

 

𝑖 = 𝑖0𝑒
𝑛𝐹

2𝑅𝑇
𝜂

 (6)  

  

To define the charge transfer resistance the AC form of Ohm’s law where it the sinusoidal potential 

divided by the sinusoidal current, which ends up being one over the steady state current times a constant. 

Where 𝑖0 is the exchange current density of the reaction, 𝑛 is the number of electrons transferred in the 

reaction, 𝐹 is the Faraday Constant, 𝑅 is the gas constant, and 𝑇 is the temperature of the system. For the 

double layer capacitance and charge transfer resistance terms the parameter that was changed for each 

term was chloride concentration in the bulk solution and exchange current density respectively. The 

parameters used in the initial model are shown in Table 1and Table 2.  

 

Table 1: Bases model parameters used to calculate the double layer capacitance  

Parameter Value 

𝜖 6.903e-10 

𝐴 3.1423e-04 

𝑑 1.8100e-10 

𝑛0 1.4720e+21 

𝑒0 1.6024e-19 

𝑉 0.0250 

𝑘𝐵 1.3800e-23 

𝑇 298 
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Table 2: Base model parameters used to calculate the charge transfer resistance 

Parameter Value 

𝑖0 1.2500e-06 

𝑛 2 

𝐹 9.6485e+04 

𝑅 8.3140 

𝑇 298 

 

The role of chloride concentration and exchange current density are shown in Figure 5 and 

Figure 6. From Figure 5Error! Reference source not found. it can be seen that with increasing 

chloride concentration the overall capacitive response of the system decreases. This is most 

likely due to the increased bulk chloride concentration the overall length of the diffuse layer 

decreases creating a smaller and less capacitive double layer capacitance. Figure 6 shows that 

there is an inverse relationship between the exchange current density and the charge transfer 

resistance. Where increasing exchange current density will decrease the charge transfer 

resistance of the system. This logic makes sense, since with increasing exchange current density 

it would mean that the reaction is occurring faster at the interface which increase the overall 

corrosion current density of the system.  

 

 
Figure 5: a) Nyquist, b) Bode, and c) Phase angle plots showing the role of bulk chloride concentration 

on the impedance response of the system  
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Figure 6: a) Nyquist, b) Bode, and c) Phase angle plots showing the role of exchange current density on 

the impedance response of the system  

Results and Discussions 

• Task 1.1: Electrochemical Impedance Spectroscopy Study: Lab Data 

 

Figure 7 shows the effect of coating thickness on the impedance response of a coated 

substrate with two different holiday radii. For all coating thicknesses, there is little deviation in 

the impedance response between the three coatings for each holiday size. However, with the 

smaller holiday, the overall impedance response is larger than the samples with the larger 

holiday for all coating thicknesses.  
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Figure 7: Effect of coating thickness on the impedance response of a coated substrate with a) 0.516 cm 

and b) 0.794 cm holiday  

Figure 8 shows the effect of polarization conditions on the impedance response of FBE 

coatings with and without holidays present in the coating. At all potential values, intact coating 

shows consistently high impedance (10¹⁰-10¹² Ω-cm²) at low frequencies, with a linear decrease 

as frequency increases. This indicates excellent barrier properties and capacitive behavior 

characteristic of an undamaged coating. This is a characteristic response of the highly capacitive 

coating. The large and small holiday defects display much lower impedance values, by the large 

drop in overall impedance values and more positive phase angle values. Small holidays 

consistently show higher impedance values than large holidays across all protection potentials, 

suggesting better residual protection capabilities. As for the protection potential effect, OCP 

shows baseline behavior, whereas standard protection provides optimal results for defect 

mitigation. Both defect sizes show distinctive phase angle peaks in the mid-frequency range 

(10⁰-10² Hz) when tested at OCP. For under protection, small holiday shows deeper phase angle 

minima (-40°) and large holidays exhibit shallower phase angle response (-20°). Under standard 

protection, phase angle minima become more pronounced for both defect sizes. Small holidays 

show more negative phase angles than large holidays. For over protection, phase angles become 

less negative and there is a convergence of phase response between large and small holidays. 

This reduction in phase angle variation shows more resistive behavior 
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Figure 8:  Bode and phase angle plots for FBE coatings with and without holidays for various CP 

conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard protection, and (g-h) over 

protection 
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Figure 9 shows the effect of polarization condition on the impedance response of coal tar 

coatings with and without holidays present in the coating. The intact coating shown consistently 

high impedance (10¹⁰-10¹² Ω-cm²) at low frequencies similar to FBE. These high values were 

shown for each polarization condition as well.  The phase angle behavior for intact coating 

exhibits near-capacitive behavior approaching -90° and shows minimal frequency dependence in 

mid to high frequency ranges Defect responses in coal tar show clearer separation between the 

intact and damaged coating conditions. Applying the under protection potential for the coal tar 

coating defects did not produce drastic change from the OCP conditions. But, applying standard 

protection did increase the overall impedance relative to under protection potential and OCP 

conditions.  For the over protection potential the overall impedance did drop but is most likely 

due to the higher rate of cathodic reaction occurring with the larger more negative potential that 

was applied to the surface.  

 

The overall impedance response was very similar for the two coatings when various 

cathodic protection potentials were applied. The intact coatings showed large impedance values 

and phase angle values near -90° for most of the frequency domain regardless of the potential 

application. There was little difference between the impedance response between OCP and 

under-protection potential for FBE and coal tar coatings. This is most likely due to OCP and 

under-protection potential being similar in magnitude. Impedance measurements under the 

standard protection potential did show an increase in the impedance magnitude and more 

negative phase angle values for both small and large holidays. This is indicative that the exposed 

surface was more protected with the application of the standard protection potential. For both 

FBE and coal tar coatings when the over-protection potential was applied the impedance 

magnitude decreased and phase angle values became more positive. This is most likely due to the 

increased cathodic reaction rate with a more negative potential relative to the other three 

conditions.  
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Figure 9:  Bode and phase angle plots for Coal Tar coatings with and without holidays for various CP 

conditions (a-b) open circuit conditions, (c-d) under protection, (e-f) standard protection, and (g-h) over 

protection 
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Project Financial Activities Incurred during the Reporting Period: 

• The personnel from TAMU includes two PhD students, one full PhD student, one part-

time PhD student, and one Master’s degree student starting in June 2024.  Two PhDs will 

perform task 1 and part of task 2. The Master's student will help to perform the testing 

methods. We added a new undergraduate student for testing and data analysis activities. 

• The UDayton team includes Sreelakshmi Sreeharan as a PostDoc researcher in this project 

and continues her efforts in Task 2 and Task 3. 

• No financial activities related to conferences or related activities.  

• The laboratory has continued to increase the number of setups and measurements. The 

simulation of buried conditions will require more budget for Laboratory work and 

accessories. During the Laboratory work, we will perform different high-resolution 

characterization tools. 

Financial Summary 

• Federal Cost Activities: 

Total Direct costs: $93,184.03 

Total Indirect:33,841.54 

Total: $127,025 

• Cost Share Activities: 

o Cost share contribution: 

• Heuristech has contributed $24,400 in technology training and/or company personnel 

hours for physical laboratory testing and training to the Reflectometry and TLM analysis.  

• Integrity Solutions has contributed $9,500 in CP field data collection, and technical staff 

resources to collect, collate, evaluate, screen, database development, and attend 

workshops. IS will contribute to the project with the database, increasing the co-share 

provided. 

• The University of Dayton has contributed $30,436 in cost share.  
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Project Activities with Cost Share Partners: 

 

During the fifth quarter of this project, we met three times with the co-sharing partners; the 

following outcomes from the meeting were: 

 

• Meetings for updates on the project and future technical discussions.  

• The partners are facilitating the collection of databases needed in this project.  

• We will organize a technical workshop with the team partners to get feedback on our 

proposal concept. We will include some students to train them in the pipeline subject. 

 

Project Activities with External Partners: 

• We will organize a technical workshop with the team partners to get feedback on our 

proposal concept. We will include operators and external partners for feedback. 

• We will organize different courses for pipeline companies, one of the topics will be 

integrity and risk based on CP. 

 

 

Potential Project Risks: 

We could finalize the NDAs for acquiring the needed database during this fifth quarter. We will 

have a larger database for different RoWs in the USA, which will strengthen and validate our 

current proposed algorithm. There is no impact for the performance of this project. The actions 

are summarized in the following table: 

 

 

Task Risk Priority Risk Description Impact Summary Response Strategy 

Select different 

pipelines for 

indirect 

inspection 

Task 3 

Medium to 

High 

-Database 

representing the 

required 

conditions 

Identification of database 

illustrating CP history and 

available CP survey and 

pipeline inspection data. 

The team has two robust sets 

of field data to develop the 

framework. This latter will 

be used in the next set of 

data. 

 

 

Future Project Work: 

We anticipate following the proposed timeline with no current changes during the next months. 

We will follow the Gantt chart to mark the progress and future plans. 

During the next 30, 60, and 90 days, we will perform task 1 activities. We will extend more 

activities in Task 1. Also, we will continue with Task 2's activities and start with task 3 for the 

next 30, 60 and 90 days. 

Theoretical work, laboratory work, and current database analysis will be considered for the next 

quarter. The acquisition of new database is going to be selected and we will determine if will 

help in the algorithm.  
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The timeline and schedule for the project are in the Gantt chart.    

Task/Subtask 

                      Fiscal Year     

2023 2024 2025 2025 2026 2026 2026 

Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 

Task 1: Designing and building the 

physical prototypes in laboratory 

conditions and deterministic 

modeling         

    

Task 2: Integrating field inspection, 

theoretical with experimental data by 

applying pattern recognition 

techniques relating the pipeline-

coating-soil system with CP         

    

Task 3: Validation of the a priori 

framework with experimental and 

field conditions for 

characterization/modeling and 

Evaluation/Validation         

    

Task 4: Development and validation 

of the methodology for ECDA based 

on CP levels         

    

Deliverable Milestones are indicated in black*, in dark green is the extended activities. 

 

 

 

Potential Impacts to Pipeline Safety: 

 

During the Transmission Line Modeling we integrate the algorithms used for Artificial 

Intelligence. The TLM will give more fundamental data with field and laboratory validation. The 

TLM was developed for multiscale conditions, the macro scale is validated with the field data 

(from Task 2). The micro conditions have been validated with Laboratory scale experiments 

(from Task1) 

The potential impact is the results generated for the AI algorithm, the TLM is based on 

deterministic and fundamental approach. This can not only show different trends for a buried 

structure under cathodic protection but also include several features in the RoW. The 

rectifiers, anodic beds, soil compositions, current distribution, etc.. 

 

We are building an integrated algorithm not only based in data field but fundamentals. 

 

Appendix 

• Task 1.2: Fitting 2D TLM to the Lab data – Mechanistic Model  

Figure 10 and Figure 11 displays the 2D TLM ability for using mechanistic definitions to fit 

data from an intact coating with various thickness and a 15-mil coating with a defect in the 

center of the exposed area. From Figure 10 it can be seen that the impedance response of the 2D 

TLM using mechanistic definitions for the coating capacitance was very similar to that of the 

experimental data.  The difference between the model and experimental data is due to the model 

assuming a homogenous value of the coating thickness and ohmic resistance of the coating. 

Unlike the actual case there is a distribution of these across the interface which creates a 
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deflection of the data from its ideal behavior. Overall the model was able to produce a similar 

impedance response that was seen in the intact coating case. The biggest deflection occurred in 

the thicker coating. This is most likely due to the thicker coating that was applied to the 

substrate, with thicker coating there is a more likely chance that the coating has some sort of 

defect that can influence the impedance response of the system. Also, with this first case of 

fitting the ohmic resistance of the coating was not changed from sample to sample in the 2D 

model but most likely there is some deviation of ohmic resistance between the actual coated 

samples that needs to be considered for a better fit. As of right now there is no model that is 

applied for determining the ohmic resistance of the coating, the value is just an assumed value in 

the 2D model.  

 
Figure 10: Nyquist and phase angle plots comparing experimental and model results for a) 15 mil, b) 25 

mil, and c) 45 mil coatings.  

Figure 11 shows the comparison of the 2D model with experimental results for a 15 mil FBE 

coating that had a holiday introduced into the coating exposing the substrate. Two initial 

measurements were performed on two separate locations and this data was used to check the 

validity of the model’s output. From Figure 11 it can be seen that the 2D model was able to give 

a pretty good estimation of the general form of the impedance response of the system. The 

deviation between the model and experimental data is most likely due to the model assuming an 

idealized impedance response and assuming one time constant for the entire surface. In actuality 

there is a distribution of time constants in the experimental results that creates the deflection 

from idealized impedance response. To create a better fit of the model to experimental data it 

must be assumed in the model that there is some distribution of time constants.  
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Figure 11: Nyquist, Bode, and Phase angle plots of a two different 15 mil FBE coating with a defect with 

an area of 0.275 cm2 

• Task 1.3: Potential decay Experimental Result 

 

 
Figure 12: Potential decay versus time plots for a) FBE and b) Coal Tar coatings and Potential decay 

versus log(time) plots for c) FBE and d) Coal Tar coatings 

Error! Reference source not found. Figure 12 show the potential decay versus time for all 

potential applications and log(time) under cathodic polarization. The cathodic condition at (-
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0.79V vs SCE) exhibited the highest decay slope, followed by the anodic condition at (+0.1V 

from OCP). The lowest decay slope was observed under the anodic condition at (+0.8V from 

OCP). Overall, the decay’s slope of fusion bonded epoxy (FBE) coating tends to be higher than 

the coal tar coating. But these cannot lead to any conclusion from this information because there 

a lot parameters need to be investigated during this thesis for example, Electrochemical 

Impedance Spectroscopy (EIS) need to be done to reveal the relation between the decay slope 

with impedance parameter. The absolute value of the potential decay slopes is shown in Table 3 

for FBE and coal tar coatings respectfully.  

 
Table 3: Potential Decay |Slope| (V/s) for FBE and Coal Tar coating 

 FBE Coal Tar 

 Cathodic Anodic Anodic Cathodic Anodic Anodic 

 -0.79 V vs SCE +0.1V vs SCE +0.8V vs SCE -0.79 V vs SCE +0.1V vs SCE +0.8V vs SCE 

1 0.2371 0.1257 0.0271 0.1039 0.0288 0.0069 

2 0.1900 0.2380 0.0295 0.1420 0.0243 0.0059 

3 0.1857 0.2361 0.0587 0.01287 0.0338 0.0093 

AVG 0.2043 0.1999 0.0385 0.1249 0.0290 0.0074 

 

 

 
Figure 13: a) Potential Decay and b) Decay Slope for various immersion time 

 

Figure 13 shows the potential decay and decay slopes for various immersion times for 

FBE coatings. Starting from Day 0, the decay slope was recorded at 0.0462 V/s. Over the 

following days, an upward trend was observed, with the decay slope gradually increasing, 

indicating a rise in the rate of degradation or coating deterioration. By Day 7, the decay slope 

rose to 0.0626 V/s, and by Day 14, it reached 0.0640 V/s. This upward trend continued, with the 

slope peaking at 0.0805 V/s on Day 21, marking the highest recorded decay rate. However, after 

Day 21, the trend reversed, and the decay slope began to decrease, suggesting a reduction in the 

degradation rate or a stabilization effect in the material or coating. On Day 28, the decay slope 

dropped to 0.0382 V/s, continuing this downward trend. By Day 35, the slope had further 

declined to 0.0297 V/s. This pattern, with an initial increase followed by a decrease in decay 

slope, might suggest that the sample initially absorbed the solution rapidly, causing an 
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accelerated degradation, but later reached a phase where the absorption stabilized, reducing the 

rate of further degradation. 

 

Task 2 and Task 3 

A critical step in clustering analysis is determining the optimal number of clusters for a given 

dataset. Since clustering techniques rely on different data properties, various measures have been 

proposed to identify the best fit. For model-based clustering, the Approximate Weight of Evidence 

Criterion (AWE) is often used. When the Expectation-Maximization (EM) algorithm is employed 

to estimate the maximum likelihood of a mixture model, an approximation to AWE known as the 

Bayesian Information Criterion (BIC) is applicable. The BIC is given by 

 

 BIC = 2loglike(𝐱, θ) − Mlog(n)  (7) 

   

where, loglike(𝐱, θ)is the maximized log-likelihood, M is the number of independent parameters 

to be estimated, and n is the number of data points. A higher BIC value indicates a better model. 

This is because a well-fitting model yields a higher log-likelihood, while minimizing the number 

of parameters(M). Using the selected features, the number of clusters was determined by assuming 

a k-component multivariate Gaussian mixture distribution. The number of clusters (k) was varied 

from 2 to 20, and the process was iterated 10 times. The results are shown in Figure 14. The knee 

point of the BIC curve, observed at k = 2, indicates the optimal number of clusters1.  

 

 
Figure 14: The number of components vs. BIC for full covariance structure, the vertical line indicates the 

possible optimal number of clusters. 

An in-house Bayesian machine-learning algorithm was developed to infer model parameters based 

on the previously derived principal components and to perform unsupervised clustering analysis. 

The algorithm utilizes a probabilistic framework to account for uncertainties in the data and ensure 

robust clustering outcomes. The results of the clustering analysis are shown in Figure 15 
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Figure 15: Clustering Results corresponding to k = 2 

The clustering process begins with the Expectation-Maximization (EM) algorithm, which is used 

to extract statistical patterns, such as cluster centers and covariance matrices, from the dataset. 

This step enables the characterization of clusters based on their statistical behavior, including 

dispersion (spread) and sparsity (density). Figure 16(a) displays a 2D scatter plot of the first two 

principal components, with markers representing the cluster centers and contours outlining the 

Gaussian mixture distributions. The contours visually demonstrate the probabilistic boundaries of 

each cluster. Figure 16(b) presents a 3D scatter plot of the first three principal components, 

providing a more comprehensive visualization of the clusters. This plot highlights the separation 

between cluster groups more distinctly, confirming the effectiveness of the clustering algorithm in 

capturing the underlying structure of the data.  

 

 
Figure 16: (a) Scatter plots of two principal components with centroid and contour for 2 clusters. (b) 3D 

scatter plots of three principal components. 

This project aims to develop advanced methods for analyzing measured cathodic protection (CP) 

potentials. The CP potential data obtained from a close interval survey (CIS) for the specified 

region is visualized in Figure 17. Additionally, the metal loss depth, as estimated using an inline 

inspection (ILI) survey, is aligned with the CP potential data and overlaid for comparison. The 
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analysis reveals a potential correlation between soil heterogeneity and regions of significant metal 

loss, highlighting the importance of understanding the relationship between soil properties and 

pipeline integrity.  

 

 
Figure 17: CP potential measured along the pipeline right of way aligned with ILI measured metal loss 

depth. 

We begin the analysis of the CIS data by addressing the global trend caused by the influence of 

rectifiers and anodes. The potentials originating from the rectifiers exhibit an exponential decay 

with increasing distance from the source. Based on the data, the rectifiers are identified at 431.6467 

km and 471.612 km, as highlighted in Figure 18(a). To prepare the data for analysis, outliers in 

the CIS measurements are first identified and removed. Subsequently, an exponential decay 

function is fitted to the rectifier locations to model the underlying global trend, as shown in Figure 

18(b). This fitted trend represents the expected potential decay due to the rectifiers' influence. The 

trend is then subtracted from the CIS data to obtain the detrended data, which is presented in Figure 

18(c). This detrending process isolates localized variations in the potential from the broader global 

influences2. 

To further analyze the detrended data, a wavelet transform is performed to generate a scale-

location spectrogram. The scale is inversely proportional to frequency. Hence, this spectrogram 

provides a comprehensive view of how the signal's frequency content changes across different 

spatial locations. The wavelet transform decomposes the signal into its constituent frequency 

components while retaining spatial resolution, allowing the identification of localized features and 

variations. Figure 18(d) displays the resulting spectrogram, revealing prominent fluctuations in the 

signal. 

These localized signal fluctuations will be further analyzed by focusing on smaller regions of 

interest and comparing them with physical pipeline features, such as valves, supports, and water 

crossings. This detailed examination aims to correlate signal anomalies with specific structural or 

environmental factors along the pipeline. 
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Figure 18: CIS on potential with location of rectifiers influencing the data. (b) Fitted global trend 

representing potential decay. (c) Detrended CIS data after removal of global trend and (d) Scale- location 

spectrogram from wavelet transform. 

 
Figure 19: (a) CIS On and Off potential (b) Aligned pipe features 

 


